首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potential energy functions (PEFs) of the X (1)A(') and A (1)A(") states of HSiF have been computed using the coupled-cluster single-double plus perturbative triple excitations and complete-active-space self-consistent-field multireference internally contracted configuration interaction methods, respectively, employing augmented correlation-consistent polarized-valence quadruple-zeta basis sets. For both electronic states of HSiF and DSiF, anharmonic vibrational wavefunctions and energies of all three modes have been calculated variationally with the ab initio PEFs and using Watson's Hamiltonian for nonlinear molecules. Franck-Condon factors between the two electronic states, allowing for Duschinsky rotation, were computed using the calculated anharmonic vibrational wavefunctions. These Franck-Condon factors were used to simulate the single vibronic level (SVL) emission spectra recently reported by Hostutler et al. in J. Chem. Phys. 114, 10728 (2001). Excellent agreement between the simulated and observed spectra was obtained for the A (1)A(")(1,0,0)-->X (1)A(') SVL emission of HSiF. Discrepancies between the simulated and observed spectra of the A (1)A(")(0,1,0) and (1,1,0) SVL emissions of HSiF have been found. These are most likely, partly due to experimental deficiencies and, partly to inadequacies in the ab initio levels of theory employed in the calculation of the PEFs. Based on the computed Franck-Condon factors, minor revisions of previous vibrational assignments are suggested. The calculated anharmonic wave functions of higher vibrational levels of the X (1)A(') state show strong mixings between the three vibrational modes of HSi stretching, bending, and SiF stretching.  相似文献   

2.
Adiabatic potential energy surfaces for the six lowest singlet electronic states of N(2)O (X (1)A('), 2 (1)A('), 3 (1)A('), 1 (1)A("), 2 (1)A(") and 3 (1)A(")) have been computed using an ab initio multireference configuration interaction (MRCI) method and a large orbital basis set (aug-cc-pVQZ). The potential energy surfaces display several symmetry related and some nonsymmetry related conical intersections. Total photodissociation cross sections and product rotational state distributions have been calculated for the first ultraviolet absorption band of the system using the adiabatic ab initio potential energy and transition dipole moment surfaces corresponding to the lowest three excited electronic states. In the Franck-Condon region the potential energy curves corresponding to these three states lie very close in energy and they all contribute to the absorption cross section in the first ultraviolet band. The total angular momentum is treated correctly in both the initial and final states. The total photodissociation spectra and product rotational distributions are determined for N(2)O initially in its ground vibrational state (0,0,0) and in the vibrationally excited (0,1,0) (bending) state. The resulting total absorption spectra are in good quantitative agreement with the experimental results over the region of the first ultraviolet absorption band, from 150 to 220 nm. All of the lowest three electronically excited states [(1)Sigma(-)(1 (1)A(")), (1)Delta(2 (1)A(')), and (1)Delta(2 (1)A("))] have zero transition dipole moments from the ground state [(1)Sigma(+)(1 (1)A('))] in its equilibrium linear configuration. The absorption becomes possible only through the bending motion of the molecule. The (1)Delta(2 (1)A('))<--X (1)Sigma(+)((1)A(')) absorption dominates the absorption cross section with absorption to the other two electronic states contributing to the shape and diffuse structure of the band. It is suggested that absorption to the bound (1)Delta(2 (1)A(")) state makes an important contribution to the experimentally observed diffuse structure in the first ultraviolet absorption band. The predicted product rotational quantum state distribution at 203 nm agrees well with experimental observations.  相似文献   

3.
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.  相似文献   

4.
Highly correlated ab initio methods are used to predict the equilibrium structures and spectroscopic parameters of the SiC(3)H(-) anion. The total energies and physical properties are reported using CASSCF/MRCI, RCCSD(T), and RCCSD(T)-F12 approaches and extended basis sets. The search of stable geometries leads to a total of 12 isomers (4 linear and 8 cyclic), for which electronic ground states have close-shell configurations. The stability of the linear form, l-SiC(3)H(-), is prominent. For the most stable linear isomer, the B(e) equilibrium rotational constant has been calculated with RCCSD(T) and a complete basis set. Core-correlation and vibrational effects have been taken into account to predict a B(0) of 2621.68 MHz for l-SiC(3)H(-) and 2460.48 MHz for l-SiC(3)D(-). The dipole moment of l-SiC(3)H(-) was found to be 2.9707 D with CASSCF/aug-cc-pV5Z and the electron affinity to be 2.7 eV with RCCSD(T)-F12A/aug-cc-pVTZ. Anharmonic spectroscopic parameters are derived from a quadratic, cubic, and quartic RCCSD(T)-F12A force field and second order perturbation theory. CASSCF/MRCI vertical excitations supply three metastable electronic states, (1)Σ(+) (3)Σ(+) and (3)Δ. Electron affinities calculated for a series of chains type SiC(n)H and SiC(n) (n=1-5) allow us to discuss the anion formation probabilities.  相似文献   

5.
Restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] potential energy functions (PEFs) were calculated for the X (2)A" and A (2)A' states of HPCl employing the augmented correlation-consistent polarized-valence-quadruple-zeta (aug-cc-pVQZ) basis set. Further geometry optimization calculations were carried out on both electronic states of HPCl at the RCCSD(T) level with all electron and quasirelativistic effective core potential basis sets of better than the aug-cc-pVQZ quality, and also including some core electrons, in order to obtain more reliable geometrical parameters and relative electronic energy of the two states. Anharmonic vibrational wave functions of the two states of HPCl and DPCl, and Franck-Condon (FC) factors of the A (2)A'-X (2)A" transition were computed employing the RCCSD(T)/aug-cc-pVQZ PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the single-vibronic-level (SVL) emission spectra of HPCl and DPCl reported by Brandon et al. [J. Chem. Phys. 119, 2037 (2003)] and the chemiluminescence spectrum reported by Bramwell et al. [Chem. Phys. Lett. 331, 483 (2000)]. Comparison between simulated and observed SVL emission spectra gives the experimentally derived equilibrium geometry of the A (2)A' state of HPCl of r(e)(PCl) = 2.0035 +/- 0.0015 A, theta(e) = 116.08 +/- 0.60 degrees, and r(e)(HP) = 1.4063+/-0.0015 A via the iterative Franck-Condon analysis procedure. Comparison between simulated and observed chemiluminescence spectra confirms that the vibrational population distribution of the A (2)A' state of HPCl is non-Boltzmann, as proposed by Baraille et al. [Chem. Phys. 289, 263 (2003)].  相似文献   

6.
Geometrical parameters, vibrational frequencies and relative electronic energies of the X1A1, ?3B1 and A1B1 states of GeCl2 have been calculated at the CCSD(T) and/or CASSCF/MRCI level with basis sets of up to aug-cc-pV5Z quality. Core electron correlation and relativistic contributions were also investigated. RCCSD(T)/ aug-cc-pVQZ potential energy functions (PEFs) of the X1A1 and ?3B, states, and a CASSCF/MRCl/aug-cc-pVQZ PEF of the A1B1 state of GeCl2 are reported. Anharmonic vibrational wavefunctions of these electronic states of GeCl2, obtained variationally using the computed PEFs, are employed to calculate the Franck-Condon factors (FCFs) of the ?-X and A-X transitions of GeCl2. Simulated absorption spectra of these transitions based on the computed FCFs are compared with the corresponding experimental laser-induced fluorescence (LIF) spectra of Karolczak et al. [J. Chem. Phys. 1993, 98, 60-70]. Excellent agreement is obtained between the simulated absorption spectrum and observed LIF spectrum of the ?-X transition of GeCl2, which confirms the molecular carrier, the electronic states involved and the vibrational assignments of the LIF spectrum. However, comparison between the simulated absorption spectrum and experimental LIF spectrum of the A-X transition of GeCl2 leads to a revision of vibrational assignments of the LIF spectrum and suggests that the X1A1 state of GeCl2 was prepared in the experimental work, with a non-Boltzmann vibrational population distribution. The X(0,0,1) level is populated over 4000 times more than expected from a Boltzmann distribution at 60 K, which is appropriate for the relative population of the other low-lying vibrational levels, such as the X(1,0,0) and X(0,1,0) levels.  相似文献   

7.
As part of our long-term program to test the diffuse interstellar band-polycyclic aromatic hydrocarbon hypothesis, we have investigated the S(1)<--S(0) electronic transition of neutral perylene (C(20)H(12)) in a combined experimental and theoretical study. Jet-cooled perylene was prepared with a pulsed discharge slit nozzle and detected by cavity ring-down spectroscopy. A number of vibronic features were observed in the 24 000-24 900 cm(-1) spectral range. Density functional and ab initio calculations were performed to determine the geometries, harmonic vibrational frequencies, and normal coordinates of both the S(0) and S(1) electronic states. A rotational temperature of 52+/-5 K was derived from a rotational contour analysis of the vibronic band associated with the 0-0 transition. A Franck-Condon treatment was carried out to calculate the vibronic spectrum of the S(1)<--S(0) transition. A good agreement was found between the calculated and the experimental spectra. A vibrational assignment is proposed and six normal modes are identified. The contribution of neutral compact polycyclic aromatic hydrocarbons to the diffuse interstellar bands is briefly discussed.  相似文献   

8.
Minimum-energy geometries, harmonic vibrational frequencies, and relative electronic energies of some low-lying singlet and triplet electronic states of stannous dichloride, SnCl(2), have been computed employing the complete-active-space self-consistent-field/multireference configuration interaction (CASSCF/MRCI) and/or restricted-spin coupled-cluster single-double plus perturbative triple excitations [RCCSD(T)] methods. The small core relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. Effects of outer core electron correlation on computed geometrical parameters have been investigated, and contributions of off-diagonal spin-orbit interaction to relative electronic energies have been calculated. In addition, RCCSD(T) or CASSCF/MRCI potential energy functions of the X(1)A(1), ?(3)B(1), and B(1)B(1) states of SnCl(2) have been computed and used to calculate anharmonic vibrational wave functions of these three electronic states. Franck-Condon factors between the X (1)A(1) state, and the ? (3)B(1) and B (1)B(1) states of SnCl(2), which include anharmonicity and Duschinsky rotation, were then computed, and used to simulate the ?-X and B-X absorption and corresponding single-vibronic-level emission spectra of SnCl(2) which are yet to be recorded. It is anticipated that these simulated spectra will assist spectroscopic identification of gaseous SnCl(2) in the laboratory and/or will be valuable in in situ monitoring of SnCl(2) in the chemical vapor deposition of SnO(2) thin films in the semiconductor gas sensor industry by laser induced fluorescence and/or ultraviolet absorption spectroscopy, when a chloride-containing tin compound, such as tin dichloride or dimethyldichlorotin, is used as the tin precursor.  相似文献   

9.
A wide range of highly correlated ab initio methods has been used to predict the geometrical parameters of the linear (X (2)Pi) and H-bridged (X (2)A(1) and A (2)B(1)) Ga(2)H isomers and two isomerization transition states (X (2)A(') and A (2)A(")) connecting the three minima. Dipole moments and vibrational frequencies are also obtained. The global minimum X (2)A(1) ground state of the H-bridged GaHGa isomer is predicted to lie only 1.6 [1.9 with the zero-point vibrational energy (ZPVE) corrections] kcal mol(-1) below the A (2)B(1) state. The X (2)A(1) state lies 5.4 kcal mol(-1) below the X (2)Pi ground state of the linear GaGaH isomer at the coupled-cluster with single, double, and perturbative triple excitations [CCSD(T)] level of theory with the augmented correlation-consistent polarized valence quadruple-zeta (aug-cc-pVQZ) basis set. The full triples coupled-cluster method is found to alter these CCSD(T) predictions by as much as 0.3 kcal mol(-1). The forward isomerization barriers from the linear ground state to the X (2)A(') and A (2)A(") transition states are determined to be 3.3 and 5.3 kcal mol(-1), respectively. The reverse isomerization barrier between the X (2)A(1) GaHGa structure and the X (2)Pi GaGaH structure is predicted to be 8.6 (8.2 with the ZPVE corrections) kcal mol(-1) at the aug-cc-pVQZ CCSD(T) level of theory.  相似文献   

10.
A variety of density functional theory and ab initio methods, including B3LYP, B98, BP86, CASSCF, CASSCF/RS2, CASSCF/MRCI, BD, BD(T), and CCSD(T), with ECP basis sets of up to the quintuple-zeta quality for Y, have been employed to study the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-). Providing that the Y 4s(2)4p(6) outer-core electrons are included in the correlation treatment, the RCCSD(T) method gives the most consistent results and is concluded to be the most reliable and practical computational method for YO2 and YO2(-). In addition, RCCSD(T) potential energy functions (PEFs) of the X(2)B2 state of YO2 and the X(1)A1 state of YO2(-) were computed, employing the ECP28MDF_aug-cc-pwCVTZ and aug-cc-pVTZ basis sets for Y and O, respectively. Franck-Condon factors, which include allowance for Duschinsky rotation and anharmonicity, were calculated using the computed RCCSD(T) PEFs and were used to simulate the first photodetachment band of YO2(-). The simulated spectrum matches very well with the corresponding experimental 355 nm photodetachment spectrum of Wu, H.; Wang, L.-S. J. Phys. Chem. A 1998, 102, 9129, confirming the reliability of the RCCSD(T) PEFs used. Further calculations on low-lying electronic states of YO2 gave T(e)'s and T(vert)'s of the A(2)A1, B(2)B1, and C(2)A2 states of YO2, as well as EAs and VDEs to these states from the X(1)A1 state of YO2(-). On the basis of the ab initio VDEs obtained in the present study, previous assignments of the second and third photodetachment bands of YO2(-) have been revised.  相似文献   

11.
We report studies aimed at unraveling the complicated structure of the CCl 2 A (1)B 1 <-- X (1)A 1 system. We have remeasured the fluorescence excitation spectrum from approximately 17,500 to 24,000 cm (-1) and report the term energies and A rotational constants of many new bands for both major isotopologues (C (35)Cl 2, C (35)Cl (37)Cl). We fit the observed term energies to a polyad effective Hamiltonian model and demonstrate that a single resonance term accounts for much of the observed mixing, which begins approximately 1300 cm (-1) above the vibrationless level of the A (1)B 1 state. The derived A (1)B 1 vibrational parameters are in excellent agreement with ab initio predictions, and the mixing coefficients deduced from the polyad model fit are in close agreement with those derived from direct fits of single vibronic level (SVL) emission intensities. The approach to linearity and thus the Renner-Teller (RT) intersection is probed through the energy dependence of the A rotational constant and fluorescence lifetime measurements, which indicate a barrier height above the vibrationless level of the X (1)A 1 state of approximately 23,000-23,500 cm (-1), in excellent agreement with ab initio theory.  相似文献   

12.
Ground and second excited electronic states of halogen and monomethyl substituted vinoxy radicals were studied by multireference configuration interaction (MRCI) calculation. Optimized geometries, rotational constants and vibrational frequencies of vinoxy and 1-fluorovinoxy showed good agreement with experimental values. Differences in calculated and observed B-X electronic transition energies were less than 0.1 eV and observed trends of blue shift upon increasing the number of substituted halogen atoms were reproduced by MRCI calculation. Observed fluorescence lifetimes of the vibrationless level in B state were in good agreement with calculated values. Rotational profiles of the 0-0 vibronic bands were successfully simulated with calculated rotational constants and transition dipole moments. Energy differences between planar and nonplanar optimized geometries in B state showed good correlation with the onset of fast nonradiative decay in B state, supporting the proposed mechanism of nonradiative decay via avoided crossings from B to A state which is followed by the decay to the ground state via conical intersections.  相似文献   

13.
UV absorption cross section of CO(2) is studied using high level ab initio quantum chemistry for electrons and iterative quantum dynamics for nuclear motion on interacting global full dimensional potential energy surfaces. Six electronic states-1, 2, 3(1)A(') and 1, 2, 3(1)A(")-are considered. At linearity, they correspond to the ground electronic state X?(1)Σ(g) (+) and the optically forbidden but vibronically allowed valence states 1(1)Δ(u), 1(1)Σ(u) (-), and 1(1)Π(g). In the Franck-Condon region, these states interact via Renner-Teller and conical intersections and are simultaneously involved in an intricate network of non-adiabatic couplings. The absorption spectrum, calculated for many rotational states, reproduces the distinct two-band shape of the experimental spectrum measured at 190 K and the characteristic patterns of the diffuse structures in each band. Quantum dynamics unravel the relative importance of different vibronic mechanisms, while metastable resonance states, underlying the diffuse structures, provide dynamically based vibronic assignments of individual lines.  相似文献   

14.
The adiabatic energies, vibrational frequencies, and geometries of the ground and excited electronic states of formylcarbene and the triplet electronic states of ketene are calculated employing the state-of-the art ab initio methods. With the help of these calculations, certain ultraviolet (UV) absorption bands observed in the flash photolysis of oxazole and iso-oxazole are assigned to formylcarbene and triplet ketene.  相似文献   

15.
Ab initio calculations have been carried out on low-lying singlet and triplet states of TeO2 at different levels of theory with basis sets of up to the augmented-polarized valence-quintuple-zeta quality. Equilibrium geometrical parameters, harmonic vibrational frequencies, and relative electronic energies of the X1A1, 1B1, 1B2, 1A2, 3A1, 3B1, 3B2, and 3A2 states of TeO2 have been calculated. Potential energy functions (PEFs) of the X1A1 and the (1)1B2 states were computed at the complete-active-space self-consistent-field multireference configuration interaction level, with a basis set of augmented-polarized valence-quadruple-zeta quality. Franck-Condon factors (FCFs) for the electronic transition between the X1A1 and (1)1B2 states of TeO2 were calculated with the above-mentioned ab initio PEFs. The (1)1B2 <-- X1A1 absorption spectrum of TeO2 was simulated employing the computed FCFs, which include Duschinsky rotation and anharmonicity, and compared with the recently published laser-induced fluorescence (LIF) spectrum of Hullah and Brown [J. Mol. Spectrosc. 200, 261 (2000)]. The ab initio results and spectral simulation reported here confirm the upper electronic state involved in the LIF spectrum to be the (1)1B2 state of TeO2 and also confirm the vibrational assignments of Hullah and Brown. However, our simulated spectrum suggests that the reported LIF spectrum from 345 to 406 nm represents only a portion of the full (1)1B2 <-- X1A1 absorption spectrum of TeO2, which extends from ca. 406 to 300 nm. Another dye other than the two used by Hullah and Brown is required to cover the 345-300 nm region of the LIF band. Ab initio calculations show strong configuration mixing of the (1)1B2 electronic surface with higher 1B2 states in a region of large TeO bond length (> or = 2.0 A) and OTeO bond angle (> or = 135.0 degrees).  相似文献   

16.
Electron photodetachment spectra provide a wealth of information about the electronic and vibrational level structures of neutral molecules that form stable anions. Experiments carried out for the smallest polyatomic silicon cluster anion (Si3-+hupsilon-->Si3*+e-) show vibrational progressions in six observed electronic bands (X-E) of the neutral species. The authors have performed ab initio calculations using the MRCI+D/aug-cc-pVQZ level for the corresponding electronic states followed by variational calculations of the vibronic levels associated with these adiabatic potential energy surfaces. In contrast to previous approaches, the authors treat the nonadiabatic dynamics on the potential energy surfaces, which allows for a vastly improved reproduction of the experimental level structure and a corrected assignment for band A.  相似文献   

17.
Ab initio potential energy and transition dipole moment surfaces are presented for the five lowest singlet even symmetry electronic states of ozone. The surfaces are calculated using the complete active space self consistent field method followed by contracted multireference configuration interaction (MRCI) calculations. A slightly reduced augmented correlation consistent valence triple-zeta orbital basis set is used. The ground and excited state energies of the molecule have been computed at 9282 separate nuclear geometries. Cuts through the potential energy surfaces, which pass through the geometry of the minimum of the ground electronic state, show several closely avoided crossings. Close examination, and higher level calculations, very strongly suggests that some of these seemingly avoided crossings are in fact associated with non-symmetry related conical intersections. Diabatic potential energy and transition dipole moment surfaces are created from the computed ab initio adiabatic MRCI energies and transition dipole moments. The transition dipole moment connecting the ground electronic state to the diabatic B state surface is by far the strongest. Vibrational-rotational wavefunctions and energies are computed using the ground electronic state. The energy level separations compare well with experimentally determined values. The ground vibrational state wavefunction is then used, together with the diabatic B<--X transition dipole moment surface, to form an initial wavepacket. The analysis of the time-dependent quantum dynamics of this wavepacket provides the total and partial photodissociation cross sections for the system. Both the total absorption cross section and the predicted product quantum state distributions compare well with experimental observations. A discussion is also given as to how the observed alternation in product diatom rotational state populations might be explained.  相似文献   

18.
The electronic and rovibronic structures of the cyclopentadienyl cation (C(5)H(5) (+)) and its fully deuterated isotopomer (C(5)D(5) (+)) have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy and ab initio calculations. The vibronic structure in the two lowest electronic states of the cation has been determined using single-photon ionization from the X (2)E(1) (") ground neutral state and 1+1(') resonant two-photon ionization via several vibrational levels of the A (2)A(2) (") excited state. The cyclopentadienyl cation possesses a triplet ground electronic state (X(+) (3)A(2) (')) of D(5h) equilibrium geometry and a first excited singlet state (a(+) (1)E(2) (')) distorted by a pseudo-Jahn-Teller effect. A complete analysis of the Emultiply sign in circlee Jahn-Teller effect and of the (A+E)multiply sign in circlee pseudo-Jahn-Teller effect in the a(+) (1)E(2) (') state has been performed. This state is subject to a very weak linear Jahn-Teller effect and to an unusually strong pseudo-Jahn-Teller effect. Vibronic calculations have enabled us to partially assign the vibronic structure and determine the adiabatic singlet-triplet interval (1534+/-6 cm(-1)). The experimental spectra, a group-theoretical analysis of the vibronic coupling mechanisms, and ab initio calculations were used to establish the topology of the singlet potential energy surfaces and to characterize the pseudorotational motion of the cation on the lowest singlet potential energy surface. The analysis of the rovibronic photoionization dynamics in rotationally resolved spectra and the study of the variation of the intensity distribution with the intermediate vibrational level show that a Herzberg-Teller mechanism is responsible for the observation of the forbidden a(+) (1)E(2) (')<--A (2)A(2) (") photoionizing transition.  相似文献   

19.
The A?(1)A(')-X?(1)A(') electronic spectrum of the jet-cooled transient molecule HAsO and its deuterated isotopologue has been observed for the first time by pulsed discharge jet laser spectroscopy. The techniques of laser-induced fluorescence and single vibronic level emission were employed to probe the electronic properties of the species. The bending and AsO stretching frequencies have been determined in both states. A rotational analysis of the 0(0)(0) bands of both HAsO and DAsO has been completed and the following effective (r(0)) structures were derived: r(")(HAs) = 1.576(3) ?, r(")(AsO) = 1.8342(5) ?, and θ(") = 101.5(4)°; and r(')(HAs) = 1.569(4) ?, r(')(AsO) = 1.7509(9) ?, and θ(') = 93.1(10)°. In the rotational analysis, lines induced by axis-tilting were observed, and calculated spectra with an axis tilting angle of 3.0(5)° reproduced the intensity of these lines. The change in geometry on electronic excitation is similar to that observed for the molecule HPO, with an increase in the X-O bond length and a decrease in the HXO angle, but contrary to the predictions of the Walsh diagram for generic HAB triatomic molecules. Our ab initio calculations show that the correlation between orbital energy and bond angle changes upon electronic excitation, resulting in the atypical angle change.  相似文献   

20.
In this work a simulation of the OHF(-) photodetachment spectrum is performed in a three-dimensional potential energy surface recently developed for OHF((3)A(")). The ground (2)A(') state potential of the anion is calculated in three dimensions based on accurate ab initio calculations and the reaction dynamics is studied using a wave packet method. The calculated spectrum shows a sequence of bands associated to vibrational HF(v) up to v=3. Each band is formed by a continuous spectrum and resonant structures. These resonances are associated to the OH-F channel well of the (3)A(") PES, in which fragmentation occurs through vibrational predissociation. Above the OH(v=0) threshold a new resonant pattern appears corresponding to heavy-light-heavy resonances. Special attention is paid to the assignment of these resonances because they mediate the reaction dynamics in the OH+F collision at low kinetic energies. The sequence of bands is in rather good agreement with that appearing in the experimental spectrum, especially at higher electron kinetic energies. At low kinetic energies, however, some other electronic states may contribute. The resonance structures might be washed out by the rotational average and the relatively low energy resolution of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号