首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The depletion force and depletion potential between two in principle unequal "big" hard spheres embedded in a multicomponent mixture of "small" hard spheres are computed using the rational function approximation method for the structural properties of hard-sphere mixtures [S. B. Yuste, A. Santos, and M. Lopez de Haro, J. Chem. Phys. 108, 3683 (1998)]. The cases of equal solute particles and of one big particle and a hard planar wall in a background monodisperse hard-sphere fluid are explicitly analyzed. An improvement over the performance of the Percus-Yevick theory and good agreement with available simulation results are found.  相似文献   

2.
Phase diagrams of binary mixtures of oppositely charged colloids are calculated theoretically. The proposed mean-field-like formalism interpolates between the limits of a hard-sphere system at high temperatures and the colloidal crystals which minimize Madelung-like energy sums at low temperatures. Comparison with computer simulations of an equimolar mixture of oppositely charged, equally sized spheres indicate semiquantitative accuracy of the proposed formalism. We calculate global phase diagrams of binary mixtures of equally sized spheres with opposite charges and equal charge magnitude in terms of temperature, pressure, and composition. The influence of the screening of the Coulomb interaction upon the topology of the phase diagram is discussed. Insight into the topology of the global phase diagram as a function of the system parameters leads to predictions on the preparation conditions for specific binary colloidal crystals.  相似文献   

3.
We studied the thermodynamic stability of fluid-fluid phase separation in binary nonadditive mixtures of hard-spheres for moderate size ratios. We are interested in elucidating the role played by small amounts of nonadditivity in determining the stability of fluid-fluid phase separation with respect to the fluid-solid phase transition. The demixing curves are built in the framework of the modified-hypernetted chain and of the Rogers-Young integral equation theories through the calculation of the Gibbs free energy. We also evaluated fluid-fluid phase equilibria within a first-order thermodynamic perturbation theory applied to an effective one-component potential obtained by integrating out the degrees of freedom of the small spheres. A qualitative agreement emerges between the two different approaches. We also addressed the determination of the freezing line by applying the first-order thermodynamic perturbation theory to the effective interaction between large spheres. Our results suggest that for intermediate size ratios a modest amount of nonadditivity, smaller than earlier thought, can be sufficient to drive the fluid-fluid critical point into the thermodinamically stable region of the phase diagram. These findings could be significant for rare-gas mixtures in extreme pressure and temperature conditions, where nonadditivity is expected to be rather small.  相似文献   

4.
We present the phase diagram of hard snowman-shaped particles calculated using Monte Carlo simulations and free energy calculations. The snowman particles consist of two hard spheres rigidly attached at their surfaces. We find a rich phase behavior with isotropic, plastic crystal, and aperiodic crystal phases. The crystalline phases found to be stable for a given sphere diameter ratio correspond mostly to the close packed structures predicted for equimolar binary hard-sphere mixtures of the same diameter ratio. However, our results also show several crystal-crystal phase transitions, with structures with a higher degree of degeneracy found to be stable at lower densities, while those with the best packing are found to be stable at higher densities.  相似文献   

5.
《Fluid Phase Equilibria》2006,239(1):91-99
Using our previously proposed matrix method, an equation of state for hard spheres is presented, which can reproduce the exact values of the first-eight virial coefficients. This equation meets both the low density and the close-packed limits and can predicts the first order fluid–solid phase transition of hard spheres. The results obtained show that the new equation of state can correlate the simulation data of compressibility factor up to high densities better than other equations of state.The new equation of state is extended to mixtures of hard spheres and excess functions of various binary liquid mixtures are calculated using the perturbation theory of Leonard–Henderson–Barker. The results are compared with existing theoretical and experimental data and with those calculated by other hard-sphere equations of state.It is seen that the results obtained by the new equation of state is quite satisfactory compared to other equations of state for the hard spheres and mixture of hard spheres.  相似文献   

6.
The authors study the phase behavior of mixtures of monodisperse colloidal spheres with a depletion agent which can have arbitrary shape and can possess a polydisperse size or shape distribution. In the low concentration limit considered here, the authors can employ the free-volume theory and take the geometry of particles of the depletion agent into account within the framework of fundamental measure theory. The authors apply their approach to study the phase diagram of a mixture of (monodisperse) colloidal spheres and two polydisperse polymer components. By fine tuning the distribution of the polymer, it is possible to construct a complex phase diagram which exhibits two stable critical points.  相似文献   

7.
We report theoretical and numerical evaluations of the phase diagram for a model of patchy particles. Specifically, we study hard spheres whose surface is decorated by a small number f of identical sites ("sticky spots") interacting via a short-ranged square-well attraction. We theoretically evaluate, solving the Wertheim theory, the location of the critical point and the gas-liquid coexistence line for several values of f and compare them to the results of Gibbs and grand canonical Monte Carlo simulations. We study both ordered and disordered arrangements of the sites on the hard-sphere surface and confirm that patchiness has a strong effect on the phase diagram: the gas-liquid coexistence region in the temperature-density plane is significantly reduced as f decreases. We also theoretically evaluate the locus of specific heat maxima and the percolation line.  相似文献   

8.
We have identified a fourth archetype of phase diagram in binary symmetrical mixtures, which is encountered when the ratio of the interaction between the unlike and the like particles is sufficiently small. This type of phase diagram is characterized by the fact that the lambda line (i.e., the line of the second-order demixing transition) intersects the first-order liquid-vapor curve at densities smaller than the liquid-vapor critical density.  相似文献   

9.
Based on segregation data, determined with profiling techniques, we analyze surface phase diagram of binary liquid mixtures composed of random olefinic copolymers. Blends with extended‐ and small‐critical point wetting regimes are discussed. First observation of wetting transition is presented. Surface enrichment‐depletion duality, a phenomenon prerequisite to the 2nd order wetting transition, is described.  相似文献   

10.
We investigate the decay of pair correlation functions in a homogeneous (bulk) binary mixture of hard spheres. At a given state point the asymptotic decay r-->infinity of all three correlation functions is governed by a common exponential decay length and a common wavelength of oscillations. Provided the mixture is sufficiently asymmetric, size ratios q less than or approximately 0.7, we find that the common wavelength reflects either the size of the small or that of the big spheres. By analyzing the (complex) poles of the partial structure factors we find a sharp structural crossover line in the phase diagram. On one side of this line the common wavelength is approximately the diameter of the smaller sized spheres whereas on the other side it is approximately the diameter of the bigger ones; the wavelength of the longest ranged oscillations changes discontinuously at the structural crossover line. Using density functional theory and Monte Carlo simulations we show that structural crossover also manifests itself in the intermediate range behavior of the pair correlation functions and we comment on the relevance of this observation for real (colloidal) mixtures. In highly asymmetric mixtures, q< or =0.1, where there is metastable fluid-fluid transition, we find a Fisher-Widom line with two branches. This line separates a region of the phase diagram where the decay of pair correlations is oscillatory from one in which it is monotonic.  相似文献   

11.
An equation of state for the multicomponent fluid phase of nonattracting rigid particles of arbitrary shape is presented. The equation is a generalization of a previously presented equation of state for pure fluids of rigid particles; the approach describes the volumetric properties of a pure fluid in terms of a shape factor, zeta, which can be back calculated by scaling the volumetric properties of pure fluids to that of a hard sphere. The performance of the proposed equation is tested against mixtures of chain fluids immersed in a "monomeric" solvent of hard spheres of equal and different sizes. Extensive new Monte Carlo simulation data are presented for 19 binary mixtures of hard homonuclear tangent freely-jointed hard sphere chains (pearl-necklace) of various lengths (three to five segments), with spheres of several size ratios and at various compositions. The performance of the proposed equation is compared to the hard-sphere SAFT approach and found to be of comparable accuracy. The equation proposed is further tested for mixtures of spheres with spherocylinders. In all cases, the equation proved to be accurate and simple to use.  相似文献   

12.
13.
Binary components Ornstein-Zernike integral equation with the concentration of large particle component being set to zero was employed to study the depletion potential behavior between two large neutral colloid particles (modeled as hard spheres)immersed in a sea of small neutral solvent particles. The prediction for the depletion potential behavior compared well with simulation data and experimental data available in the literature. It is found that the Hansen-Verlet one phase criterion,based on the effective one component system with the present depletion potential,for the freezing transition is completely not suitable for the real binary components system. It is disclosed that the unsuitability is due to the volume term of the solid phase and liquid phase which can not be treated selfconsistently in the Hansen-Verlet one phase criterion.  相似文献   

14.
Coherent anti-Stokes Raman scattering microscopy is performed on glassy systems of poly(methylmethacrylate) colloidal particles in density- and refractive-index-matched solvents. Samples are prepared with varying amounts of linear polystyrene, which induces a depletion driven attraction between the nearly hard-sphere particles. Images collected over several hours confirm the existence of a reentrant glass transition. The images also reveal that the dynamics of repulsive and attractive glasses are qualitatively different. Colloidal particles in repulsive glasses exhibit cage rattling and escape, while those in attractive glasses are nearly static while caged but exhibit large displacements upon (infrequent) cage escape.  相似文献   

15.
B. Barboy 《Chemical physics》1975,11(3):357-371
The solution of the generalized equations of Percus and Yevick is obtained for mixtures of molecules interacting via the adhesive hard-sphere potential. It is shown that the possibility of a discontinuous phase or fluid-fluid transition appears only in such binary systems where the adhesion acts between like particles of at least one of the components. The found distribution functions are used to obtain from the compressibility equation the expression for the pressure of a mixture consisting of v components in arbitrary concentration. The pressure, chemical potential and other thermodynamic properties are calculated explicitly in the limit when several components (the solutes) are dilute and one component (the solvent) is in its “liquid” phase. The solubility of substances of small molecules is shown to increase when the temperature T rises. The same regularity is found in the case when the interaction between solvent and solute consists only of a hard-sphere potential. In the general case of the presence of adhesion between solvent and solute molecules and for arbitrary ratio of particles sizes a minimum appears on the solubility cuves versus T. If the attraction is sufficiently big the drop in the solubility may be very sharp and reach the value zero at a certain temperature. The results obtained are qualitatively supported by examples from experiment.  相似文献   

16.
The fluid-solid transition of the Lennard-Jones model is analyzed along a supercritical isotherm. The analysis is implemented via a simulation method which is based on a modification of the constrained cell model of Hoover and Ree. In the context of hard-sphere freezing, Hoover and Ree simulated the solid phase using a constrained cell model in which each particle is confined within its own Wigner-Seitz cell. Hoover and Ree also proposed a modified cell model by considering the effect of an external field of variable strength. High-field values favor configurations with a single particle per Wigner-Seitz cell and thus stabilize the solid phase. In previous work, a simulation method for freezing transitions, based on constant-pressure simulations of the modified cell model, was developed and tested on a system of hard spheres. In the present work, this method is used to determine the freezing transition of a Lennard-Jones model system on a supercritical isotherm at a reduced temperature of 2. As in the case of hard spheres, constant-pressure simulations of the fully occupied constrained cell model of a system of Lennard-Jones particles indicate a point of mechanical instability at a density which is approximately 70% of the density at close packing. Furthermore, constant-pressure simulations of the modified cell model indicate that as the strength of the field is reduced, the transition from the solid to the fluid is continuous below the mechanical instability point and discontinuous above. The fluid-solid transition of the Lennard-Jones system is obtained by analyzing the field-induced fluid-solid transition of the modified cell model in the high-pressure, zero-field limit. The simulations are implemented under constant pressure using tempering and histogram reweighting techniques. The coexistence pressure and densities are determined through finite-size scaling techniques for first-order phase transitions which are based on analyzing the size-dependent behavior of susceptibilities and dimensionless moment ratios of the order parameter.  相似文献   

17.
18.
Using density functional theory we calculate the density profiles of a binary solvent adsorbed around a pair of big solute particles. All species interact via repulsive Gaussian potentials. The solvent exhibits fluid-fluid phase separation, and for thermodynamic states near to coexistence the big particles can be surrounded by a thick adsorbed "wetting" film of the coexisting solvent phase. On reducing the separation between the two big particles we find there can be a "bridging" transition as the wetting films join to form a fluid bridge. The effective (solvent mediated) potential between the two big particles becomes long ranged and strongly attractive in the bridged configuration. Within our mean-field treatment the bridging transition results in a discontinuity in the solvent mediated force. We demonstrate that accounting for the phenomenon of bridging requires the presence of a nonzero bridge function in the correlations between the solute particles when our model fluid is described within a full mixture theory based upon the Ornstein-Zernike equations.  相似文献   

19.
The wetting of PDMS-grafted silica spheres (PDMS- g-silica) is connected to their depletion restabilization in semidilute and concentrated PDMS/cyohexane polymer solutions. Specifically, we found that a wetting diagram of chemically identical graft and free homopolymers predicts stability of hard, semisoft, and soft spheres as a function of the bulk free polymer volume fraction, graft density, and the graft and free polymer chain lengths. The transition between stable and aggregated regions is determined optically and with dynamic light scattering. The point of demarcation between the regions occurs when the graft and free polymer chains are equal in length. When graft chains are longer than free chains, the particles are stable; in contrast, the particles are unstable when the opposite is true. The regions of particle stability and instability are corroborated with theoretical self-consistent mean-field calculations, which not only show that the grafted brush is responsible for particle dispersion in the complete wetting region but also aggregation in the incomplete wetting region. Ultimately, our results indicate that depletion restabilization depends on the interfacial properties of the nanoparticles in semidilute and concentrated polymer solutions.  相似文献   

20.
We report a numerical study of equilibrium phase diagrams and interfacial properties of bulk and confined colloid-polymer mixtures using grand canonical Monte Carlo simulations. Colloidal particles are treated as hard spheres, while the polymer chains are described as soft repulsive spheres. The polymer-polymer, colloid-polymer, and wall-polymer interactions are described by density-dependent potentials derived by Bolhuis and Louis [Macromolecules 35, 1860 (2002)]. We compared our results with those of the Asakura-Oosawa-Vrij model [J. Chem. Phys. 22, 1255 (1954); J. Polym Sci 33, 183 (1958); Pure Appl. Chem. 48, 471 (1976)] that treats the polymers as ideal particles. We find that the number of polymers needed to drive the demixing transition is larger for the interacting polymers, and that the gas-liquid interfacial tension is smaller. When the system is confined between two parallel hard plates, we find capillary condensation. Compared with the Asakura-Oosawa-Vrij model, we find that the excluded volume interactions between the polymers suppress the capillary condensation. In order to induce capillary condensation, smaller undersaturations and smaller plate separations are needed in comparison with ideal polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号