共查询到17条相似文献,搜索用时 46 毫秒
2.
基于高光谱图像信息融合的红提糖度无损检测 总被引:1,自引:0,他引:1
红提糖度是重要的内部品质衡量指标,传统的检测方法均为破坏性生化检测,本文基于高光谱成像技术,提出了一种基于高光谱信息融合的红提糖度含量无损检测方法。采集并提取260个红提样本的光谱信息和图像信息,对光谱信息分别利用SNV、S-G等光谱预处理方法建立PLSR模型,确定最好的光谱预处理方法,分别采用一次降维(GA、CARS、IRIV)算法和组合降维算法(CARS-SPA、IRIV-SPA、GA-SPA)共六种降维方法对光谱信息进行特征变量提取;获取灰度共生矩阵的图像纹理信息,结合图像的颜色信息(R、G、B、H、S、V、L、a、b),组成19个图像特征参数,采用PCA算法对图像信息进行降维,分别建立基于降维处理后的光谱信息、图像信息以及两者融合的红提糖度线性预测模型PLSR、非线性预测模型LSSVM,并对比分析模型的优劣。结果表明,若只利用光谱信息建模,IRIV-SPA可有效地提取红提糖度光谱信息的特征波长,提高模型的预测性能;若只利用图像信息进行建模,模型的预测性能不好,PCA降维有效地提高了模型的预测性能,但提高的性能有限;将IRIV-SPA特征波段提取后的光谱和经PCA降维后的图像信息进行融合,分别建立PLSR和LSSVM模型,红提糖度的最优PLSR模型的校正集和预测集相关系数分别为0.943,0.941;红提糖度的最优LSSVM模型的校正集和预测集相关系数分别为0.954,0.952。LSSVM所建模型的效果好于PLSR所建模型,但模型的运算时间较长。两种模型的精度均比单方面基于光谱或图像信息的模型都有较大的提高,表明融合高光谱图像的光谱与图像信息不仅可以提高模型的运算速度、简化模型,同时有效地提高了红提糖度预测性能,为红提糖度的检测找到了一种新的方法。 相似文献
3.
5.
高光谱成像的猕猴桃糖度无损检测方法 总被引:1,自引:0,他引:1
猕猴桃糖度是重要的猕猴桃内部品质衡量指标.传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义.基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一... 相似文献
6.
基于NIR高光谱成像技术的长枣虫眼无损检测 总被引:3,自引:2,他引:3
为了研究快速识别虫眼枣与正常枣的有效方法,利用特征波长主成分分析法结合波段比算法进行虫眼枣识别。首先,利用NIR高光谱成像系统采集130个长枣(50个正常、80个虫眼枣)图像,提取并分析不同类型长枣特征区域的平均光谱曲线,对970~1 670 nm范围内的光谱数据进行主成分分析,确定7个特征波长(990,1 028,1 109,1 160,1 231,1 285,1 464 nm)。然后,对长枣图像做主成分分析,选择PC2图像进行虫眼识别,虫眼与正常枣的识别率分别为67.5%、100%。为了进一步提高虫眼枣的识别率,采用波段比(R1231/R1109)对未识别的虫眼枣进行再次识别,识别率提高到90%。结果表明,基于NIR高光谱成像技术的检测方法对虫眼枣识别是可行的,同时也为多光谱成像技术应用于在线检测长枣品质提供了理论依据。 相似文献
7.
基于高光谱技术的土壤水分无损检测 总被引:2,自引:0,他引:2
利用高光谱成像仪(光谱范围400~1 000 nm)对土壤含水率进行了无损检测。比较了208个土样不同天数下土壤含水率与光谱变化、不同质量含水量光谱的差异;对比分析了不同光谱预处理方法、不同方法提取特征波长、采用多元线性回归(multiple linear regression,MLR)、主成分回归(principal component regression,PCR)与偏最小二乘回归(partial least squares regression,PLSR)建模,优选出最佳模型。结果表明:光谱曲线的反射率随着土壤含水率的增加而减小。当超过田间持水率时,光谱曲线的反射率会随着土壤含水率的增加而增大。对比分析了不同预处理方法,近红外波段优选出单位向量归一化预处理方法。采用无信息变量消除法(UVE)、竞争自适应加权采样(CARS)、β系数法、连续投影算法(SPA)方法提取特征波长为49,30,5和7。为了减少数据冗余,对UVE与CARS提取的特征波长进一步采用SPA方法进行特征提取,UVE+SPA,CARS+SPA提取特征波长数分别为5和8个。在此基础上,利用MLR,PCR和PLSR方法对400~1 000 nm范围的特征波长建立模型,对比分析不同建模效果,优选出β系数提取的特征波长的MLR模型。最优的特征波长为411,440,622,713和790 nm,最优模型的预测相关系数Rp=0.979,预测均方根误差RMSEP为0.763。因此,今后可采用不同波段对土壤含水率进行定量分析。 相似文献
8.
苹果糖度的光谱图像无损检测技术研究 总被引:2,自引:0,他引:2
应用光谱图像技术进行了苹果内部品质无损检测技术的研究。通过采集不同波长(分别为632 nm,650 nm,670 nm,780 nm,850 nm和900 nm)的光谱图像,对所采集的光谱图像灰度分布进行洛伦兹分布(LD)、高斯分布(GD)、指数分布(ED)函数的拟合,通过比较发现洛伦兹分布为最优灰度分布拟合函数。将苹果的糖度与洛伦兹分布函数拟合所得参量分别进行多元线性回归,建立最佳单波长、最佳双波长组合、最佳三波长组合和最佳四波长组合的校正方程,相关系数R分别为0.622、0.776、0.831、0.813。实验表明,利用光谱图像技术无损检测苹果糖度是可行性的,为计算机图像对水果进行内部品质的无损检测提供技术依据。 相似文献
9.
用近红外漫反射光谱无损检测血糖的初步研究 总被引:11,自引:0,他引:11
利用近红外漫反射光谱技术研究了无损定量监测血糖的方法。使用BRUKERVECTOR 2 2傅里叶变换光谱仪和GRACEⅡ型血糖仪对一组健康自愿受试者 (两名年轻男子和两名年轻女子 )测试后 ,获得了不同的状态条件下 2 6个样本的光谱及其血糖值 ,选择一部分有代表性的样本作为建立模型使用 ,而被预测的样本来自不参加建模的数据。选择不同的谱区、预处理方法对数据进行处理得到以下结果 :1)谱区选在 90 0 0~12 0 0 0cm- 1 选择MIN MAX归一化预处理方法建模、预测 ,预测结果差值在 36mg·dL- 1 以上 ,选择平滑和二阶导数 ,则建模结果≤ 16mg·dL- 1 ,预测结果≤ 2 5mg·dL- 1 ;另选谱区 4 0 0 0~ 5 0 0 0cm- 1 ,选择平滑和一阶导数 ,建模与预测结果的差值在 2 5mg·dL- 1 以上。 2 )选择 4 0 0 0~ 90 0 0cm- 1 谱区 ,经平滑和二阶导数处理并在此区建模并预测 ,其中建模中预测差值≤ 15mg·dL- 1 ,预测≤ 31mg·dL- 1 ;由OPU 3 0 1自动挑选的谱区6 0 0 0~ 75 0 0cm- 1 和 4 2 0 0~ 4 70 0cm- 1 ,采用平滑、一阶导数和矢量归一化在此区建模和预测 ,其中建模中预测差值≤ 11mg·dL- 1 ,预测≤ 2 2mg·dL- 1 。 3)采用个体自我建模方法 ,在 90 0 0~ 12 0 0 0cm- 1 选择平滑和二阶导数进行预处理 ,建模结果≤ 15mg 相似文献
10.
可见光光谱检测赣南脐橙糖度的研究 总被引:7,自引:1,他引:7
利用透射光谱测定法获取赣南脐橙的可见光光谱(400~800 nm), 采用多种校正算法, 选取不同的波段范围对透射光谱进行有效信息提取和分析,对比研究了不同因子数时不同校正方法进行糖度快速检测的影响,确定了最佳参比、最佳的波段范围、最佳光谱处理方法和用于快速检测分析的最佳校正方法。实验结果表明: 偏最小二乘法校正模型的预测精度在450~770 nm波段范围内,因子数为7时其糖度的预测精度最好,其预测集的相关系数达到了0.857, 预测标准偏差为0.562。 相似文献
11.
高光谱技术结合特征波长筛选和支持向量机的哈密瓜成熟度判别研究 总被引:2,自引:0,他引:2
可溶性固形物含量(SSC)和硬度是哈密瓜划分等级的重要指标,同时也是其成熟度的表征因子。因此,为满足哈密瓜自动化分级和适宜采摘,采用高光谱技术结合特征波长筛选的方法,同时对哈密瓜的可溶性固形物含量、硬度及成熟度进行了无损检测研究。对多元散射校正(MSC)处理后的光谱分别利用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)和CARS-SPA方法筛选了哈密瓜可溶性固形物和硬度的特征波长,并将原始光谱、MSC预处理后的光谱和所筛选的特征波长作为输入变量分别建立哈密瓜可溶性固形物和硬度的支持向量机(SVM)预测模型及成熟度判别模型。结果显示,MSC-CARS-SPA方法所建立的可溶性固形物和硬度SVM预测模型最优,其Rpre, RMSEP和RPD分别为0.940 4, 0.402 7, 2.94 1和0.825 3, 35.22, 1.771。同时对哈密瓜成熟度进行了判别分析,并分别建立了基于全光谱、单一的可溶性固形物或硬度特征波长和主成分分析(PCA)特征融合的哈密瓜成熟度SVM判别模型。结果显示,CARS-PCA-SVM模型的判别结果与全光谱SNV-SVM模型相同,其校正集和预测集判别正确率分别为95%和94%。研究表明,利用高光谱技术结合特征波长筛选方法可实现同时对哈密瓜可溶性固形物和硬度的定量预测及成熟度判别。 相似文献
12.
高光谱成像在水果内部品质无损检测中的研究进展 总被引:13,自引:0,他引:13
随着高光谱成像技术的日趋成熟与高光谱成像硬件、软件成本的不断下降,以及高光谱图像数据处理算法的不断改进, 应用高光谱成像技术对水果品质进行无损检测成为当前研究热点之一。为了能跟踪国内外的最新研究成果, 对高光谱成像在水果内部品质(成熟度、坚实度、可溶性固形物、水分)检测研究进行综述,以期对我国相关研究人员的研究工作提供参考。 相似文献
13.
梨果糖浓度近红外漫反射光谱检测的预处理方法研究 总被引:1,自引:0,他引:1
糖浓度是梨果内部品质的重要指标。实验测得了梨果的近红外漫反射吸光度谱,并且对其进行了光谱预处理,包括多元散射校正(MSC)、基线校正(baseline correction)、标准正态变量变换(SNV)和平滑去噪(moving average)。结果表明,经过预处理后的吸光度谱在光谱归一化、噪声消减等方面有着较为明显的优势。使用偏最小二乘法(PLS)对原始吸光度谱和预处理后的吸光度谱分别进行处理,得到结论:应用平滑去噪预处理后的吸光度谱进行预测的准确度优于原始吸光度谱,得相关系数为0.990 8,预测标准偏差为0.019 0。 相似文献
14.
基于近红外漫反射光谱无损检测梨可溶性固形物的光强影响探究 总被引:2,自引:0,他引:2
通过设置四种不同的光源强度研究光强对近红外漫反射无损检测梨可溶性固形物的影响,对四种类别光强的光谱定性分析显示四类光谱差异微小,肉眼几乎无法辨别。在进一步的定量分析中,通过主成分分析、逐步线性回归分析以及偏最小二乘法分析的比较,主成分分析(r值跨度:0.253~0.606;RMSEC值跨度:0.549~0.614;RMSEP值跨度:0.455~0.752)与逐步线性回归分析(r值跨度:0.249~0.551;RMSEC值跨度:0.536~0.624;RMSEP值跨度:0.646~0.734)得到的模型较差。通过对光谱进行一阶求导和二阶求导预处理,主成分分析与逐步线性回归分析建模结果仍不理想。通过二阶求导预处理,偏最小二乘法所建的模型得到优化,其中相关系数r值跨度为0.947~0.970,混合模型的相关系数r值达到了0.95 7,分析结果表明光强对梨的近红外漫反射光谱无损检测可溶性固形物的影响差异不大,为光谱仪的田间作业奠定了基础。 相似文献
15.
近红外漫反射用于检测苹果糖度及有效酸度的研究 总被引:12,自引:11,他引:12
提出了应用近红外漫反射光谱技术并结合光纤传感技术快速检测苹果糖度和有效酸度的新方法。以傅里叶变换光谱仪(12 500~4 000 cm-1)为试验仪器,以120个红富士苹果为标准样品并结合偏最小二乘法,建立了苹果糖度、有效酸度的定量预测数学模型。试验结果为:样品预测值和真实值之间的相关系数分别为0.970,0.906,标准校正误差(SEC)分别为0.261,0.0562,标准预测误差(SEP)分别为0.272,0.0562,偏差(Bias)分别为0.011,0.0115。通过本研究表明:应用近红外光谱漫反射技术在10 341~5 461 cm-1光谱波长范围内对苹果糖度的无损检测和在10 341~3 818 cm-1有效光谱范围内对有效酸度的无损检测具有可行性。 相似文献
16.
黄桃碰伤和可溶性固形物高光谱成像无损检测 总被引:1,自引:0,他引:1
黄桃在线分级时,表面损伤和可溶性固形物同时在线检测。损伤和可溶性固形物是评价黄桃品质好坏的重要指标。采用高光谱成像技术,尝试对黄桃损伤和可溶性固形物进行同时检测。利用主成分分析法,首先对高光谱图像进行主成分分析得到最佳PC(principal component)图像,其次根据PC图像中各波长对其贡献率的大小确定最佳特征波长(550和720 nm)并结合二值化,图像掩膜和阈值分割以及相关的图像处理技术对最佳光谱图像进行定性判别。其准确率最高达到94.6%,同时建立偏最小二乘定量回归模型对正常样品SSC(soluble solid content)含量进行预测,通过对模型的不断优化,实现了基于高光谱成像技术对黄桃碰伤和可溶性固形物同时检测。可溶性固形物分选准确率为79.2%。实验结果表明,利用高光谱成像技术可以实现对黄桃碰伤和可溶性固形物同时检测,该研究可以为实际在线分选提供理论依据和参考。 相似文献
17.
以高光谱数据有效预测苹果可溶性固形物含量 总被引:4,自引:0,他引:4
从高光谱数据中选取能够有效进行内部品质检测的特征波长,是利用高光谱成像技术进行水果品质定量分析的关键。本文采用遗传算法(GA)、连续投影算法(SPA)和GA-SPA算法分别从400~1 000 nm的苹果高光谱图像中提取特征波长,利用偏最小二乘法(PLS)、最小二乘支撑向量机(LS-SVM)和多元线性回归(MLR)建模进行苹果可溶性固形物含量(SSC)的定量分析并进行了综合比较。160个样品中,120个用于建模,40个用于预测。比较发现SPA-MLR模型获得了最好的结果,R2p,RMSEP和RPD分别为0.950 1,0.308 7和4.476 6。结果表明:SPA能够有效地用于高光谱数据的变量选择,利用SPA-MLR可建立稳健的苹果SSC预测模型,较少的有效变量和MLR模型的易解释性表明该模型在在线检测和便携式仪器开发中具有较大的应用潜力。 相似文献