首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In atomistic models of amorphous materials, ring statistics provide a measure of medium-range order. However, while ring statistics tell us the number of rings present in the model, they do not give us any information about the arrangement of rings, e.g., whether the rings are clustered and how big the cluster is. In this work we present a method to calculate the ring connectivity, or clustering, of rings. We first calculate the rings present in the model using the shortest path criteria of Franzblau and then find the rings that are connected together and group them into clusters. We apply our method to a set of models of disordered carbons, obtained using a reverse Monte Carlo procedure developed in a recent work. We found that in these carbon models the five-, six-, and seven-membered rings are connected together, forming clusters. After isolating the clusters, we found that they resemble defective graphene segments twisted in a complex way. The clusters give further insight about the arrangement of carbon atoms in microporous carbons at a larger length scale. Moreover, the method can be applied to any network covalent solid that contains rings and thus gives information about the ring connectivity present in such materials.  相似文献   

2.
This paper describes the synthesis of narrowly distributed block copolymers consisting of a hole conducting triarylamine block and an anchor block via RAFT polymerization. The anchor block is thereby introduced via a reactive ester approach. Block copolymers with dopamine anchor groups bind to oxidic semiconductors like TiO2, SnO2, and ZnO. Thus, it becomes possible to cover inorganic electron conducting (acceptor) nanomaterials with a corona of an organic hole conducting (donor) polymer like poly(triphenylamine), giving new hybrid materials. The poly(triphenylamine) grafted to inorganic nanorods allows the preparation of stable nanorod dispersions in appropriate solvents. At higher concentration the nanorods form liquid crystalline phases in various solvents and in a low Tg oligotriphenylamine matrix. This offers the potential to orient semiconducting inorganic nanorods in a hole conducting polymer matrix by self‐assembly.

  相似文献   


3.
An organo‐main group network solid having tetrahedral phosphonium vertices was prepared from a diacetyl monomer via a straightforward cyclotrimerization reaction. The network solid composition was examined by FT‐IR spectroscopy and elemental microanalysis, revealing quantitative reaction of carbonyl moieties and a 67% degree of cross‐linking. The reaction yielded a material having a layered structure that is comprised of an amorphous polymer and which is thermally stable up to 370 °C in air with a char yield of 40% upon heating as high as 800 °C under N2. The polymer is stable to 6 M NaOH(aq ) at 60 °C for 24 h and takes up only 10.63% of water by mass at room temperature. The surface morphology, as examined by AFM, revealed a very smooth as‐prepared film (RMS roughness of 3 nm). The specific surface area measured by BET analysis with N2 gas is 9 m2 g?1, indicating a type II, nonporous material. Physisorption with CO2 revealed that the phosphonium network solid has additional affinity for CO2, suggesting that such materials may have use for applications such as CO2 capture. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 1620–1625  相似文献   

4.
5.
The unprecedented ternary Te-Fe-Cu chain polymers [{Et4N}{TeFe3(CO)9Cu}]infinity and [{TeFe3(CO)9Cu2}(mu-4,4'-dipyridyl)1.5]infinity were prepared from the self-assembly of [Et4N]2[TeFe3(CO)9] with [Cu(MeCN)4][BF4] in THF or in the presence of 4,4'-dipyridyl in THF. These two chain polymers, which can also be constructed from the precursor complex TeFe3(CO)9Cu2(MeCN)2, show semiconducting behaviors with low band gaps of 0.59 and 0.41 eV, respectively. In addition, their conductivity and the effect of the bridging ligand are further elucidated by theoretical calculations.  相似文献   

6.
Poly(monocyanoacetylenes) (PMCA) were synthesized by anionic, Ziegler–Natta, metathesis, and photo initiations. The Ziegler–Natta-catalyzed polymers probably have highly stereoregular cis-transoid structure that contains very few defects and the nitrile groups are difficultly cyclized. It has M?n = 1100. PMCA obtained by anionic polymerization at ?78°C has M?n ~ 4800; it is rich in trans-transoid structures but probably contains other isomeric units as well. The unpaired spin concentrations in these polymers are very high, comparable to that in trans-polyacetylene (PA) isomerized above 150°C. UV irradiation initiated rapid polymerization of cyanoacetylene in solid state at low temperature but the products were bleached in color after long irradiation. The unpaired spins in PMCA are immobile; nitrile cyclization causes some decrease in EPR linewidth and increase in room-temperature conductivity (σRT). There was also a large increase in unpaired spin concentrations to about 200 monomer units/spin. Iodine doping increases σRT to about 10?3 (ω cm)?1 but the dopant is readily removed by evacuation and the polymer returns to its original insulating state. The properties of pristine and doped PMCA, such as EPR g-value, ΔHpp, T1, T2, and σRT are very similar. The similarities persist after cyclization and doping for this pair of polymers. These properties are also compared with those of poly(methylacetylene), poly(phenylacetylene), poly(dicyanoacetylene) and PA, and the significance is discussed.  相似文献   

7.
Recently, low dimension nanostructures have gained considerable attention due to their technological potential as unique types of nanoscale building blocks for future optoelectronic devices and systems. Semiconducting composite nanomaterials, which can combine the advantages of two or more components, have been the focus in the area of nanomaterials synthesis and device application.In this paper, we report our work on the preparation of composite nanomaterials based on CNTs.CNTs were coated by organic or inorganic species via novel and facile methods (Fig. 1 and Fig.2).These functional CNTs based composites show eminent prospects and opportunities for new applications in a wide variation of areas.  相似文献   

8.
Poly(dicyanoacetylene) (PDCA) has been synthesized and characterized. The pristine polymer has EPR g-value, linewidth, unpaired spin concentration, spin—spin relaxation time (T2), and room temperature dc conductivity (σRT) very similar to those of pristine cis-polyacetylene (PA), but shorter spin—lattice relaxation time (T1). Saturation doping with iodine has little effect on most EPR characteristics of the polymer except for a slight increase in T1. The doped PDCA has σRT value of only 5 X 10-9 (Ω cm)-1, indicating either low carrier concentration and/or carrier mobility. Partial cyclization of the nitrile groups by heating at 400°C of PDCA produces l-PDCA with significant increases in unpaired spin concentration and σRT but marginal effects on other properties. Saturation doping of l-PDCA with iodine increases σRT to 7 × 10-3 (Ω cm)-1 without appreciable changes in EPR characteristics. The dopants in both polymers can be removed by evacuation indicating only weak charge transfer interactions. The possible stereoelectronic contribution toward the property differences between the PDCA polymers and PA are discussed.  相似文献   

9.
Borophene sheets have been synthesized in recent experiments, but the metallic nature and structural instability of the sheets seriously prevent emerging applications. Hydrogenated borophene has been predicted as an ideal material for nanoelectronic applications due to its high stability as well as excellent electronic and mechanical properties. However, the fabrication of hydrogenated borophene is still a great challenge. Here, we demonstrate that hydrogenated borophenes in large quantities can be prepared without any metal substrates by a stepwise in‐situ thermal decomposition of sodium borohydride under hydrogen as the carrier gas. The borophenes with good crystallinity exhibit superior stability in strong acid or base solvents. The structure of the grown borophene is in good agreement with the predicted semiconducting α‐boron sheet. A fabricated borophene‐based memory device shows a high ON/OFF‐current ratio of 3×103 and a low operating voltage of less than 0.35 V as well as good stability.  相似文献   

10.
11.
The synthesis of statistical fluorene-type copolymers with on-chain Pt-salen phosphorescent units and their use in electrophosphorescent OLEDs is reported.  相似文献   

12.
13.
A novel chemical route for deposition of zinc selenide quantum dots in thin film form is developed. The deposited films are characterized with very high purity in crystallographic sense, and behave as typical intrinsic semiconductors. Evolution of the average crystal size, lattice constant, lattice strain and the optical properties of the films upon thermal treatment is followed and discussed. The band gap energy of as-deposited ZnSe films is blue-shifted by ≈0.50 eV with respect to the bulk value, while upon annealing treatment it converges to 2.58 eV. Two discrete electronic states which originate from the bulk valence band are observed in the UV-VIS spectra of ZnSe 3D quantum dots deposited in thin film form via allowed electronic transitions to the 1S electronic state arising from the bulk conduction band—appearing at 3.10 and 3.50 eV. The splitting between these two states is approximately equal to the spin-orbit splitting in the case of bulk ZnSe. The electronic transitions in the case of non-quantized annealed films are discussed in terms of the direct allowed band-to-band transitions with the spin-orbit splitting of the valence band of 0.40 eV. The effective mass approximation model (i.e., the Brus model) with the static relative dielectric constant of bulk ZnSe fails to predict correctly the size dependence of the band gap energy, while only a slight improvement is obtained when the hyperbolic band model is applied. However, when substantially smaller value for εr (2.0 instead of 8.1) is used in the Brus model, an excellent agreement with the experimental data is obtained, which supports some earlier indications that the quantum dots εr value could be significantly smaller than the bulk material value. The ionization energy of a deep donor impurity level calculated on the basis of the temperature dependence of the film resistivity is 0.82 eV at 0 K.  相似文献   

14.
Fluorescence imaging, particularly in the NIR-II region (1000–1700 nm), has become an unprecedented tool for deep-tissue in vivo imaging. Among the fluorescent nanoprobes, semiconducting polymer nanoparticles (Pdots) appear to be a promising agent because of their tunable optical and photophysical properties, ultrahigh brightness, minimal autofluorescence, narrow-size distribution, and low cytotoxicity. This review elucidates the recent advances in Pdots for deep-tissue fluorescence imaging and the facing future translation to clinical use.  相似文献   

15.
The presence of excited-states and charge-separated species was identified through UV and visible laser pump and visible/near-infrared probe femtosecond transient absorption spectroscopy in spin coated films of poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4,7-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) nanoparticles and mesoparticles. Optical gain in the mesoparticle films is observed after excitation at both 400 and 610 nm. In the mesoparticle film, charge generation after UV excitation appears after around 50 ps, but little is observed after visible pump excitation. In the nanoparticle film, as for a uniform film of the pure polymer, charge formation was efficiently induced by UV excitation pump, while excitation of the low energetic absorption states (at 610 nm) induces in the nanoparticle film a large optical gain region reducing the charge formation efficiency. It is proposed that the different intermolecular interactions and molecular order within the nanoparticles and mesoparticles are responsible for their markedly different photophysical behavior. These results therefore demonstrate the possibility of a hitherto unexplored route to stimulated emission in a conjugated polymer that has relatively undemanding film preparation requirements.  相似文献   

16.
Semiconducting properties of polypyrrole films in aqueous solution   总被引:1,自引:0,他引:1  
The influence of the nature of the anions on the conductivity of polypyrrole films in aqueous solution was investigated by photocurrent spectroscopy combined with electrochemical impedance spectroscopy in dependence on the potential. As demonstrated, the conductivity of polypyrrole films at negative potentials can vary from a semiconducting to an ionic conducting state, depending on the size of the charge-compensating counter-anion incorporated during the electropolymerization. The reduced polypyrrole shows semiconducting properties when small anions are inserted, releasing the polymer matrix during the reduction process. The polymer can than be considered as a two-layer system, consisting of a semiconducting layer and a porous layer. Measurements at different thickness of polypyrrole films have shown that the position of the semiconducting layer is in the electrode/polymer interface. The ohmic resistance of the semiconducting layer is in the range 1–5 kΩ, the capacitance approaches a value of 100–500 nF and the flatband potential is −0.62 VSCE. If large anions are incorporated, cation insertion takes place during reduction, the electrolyte content in the polymer then is relatively high and the polymer's behaviour is similar to that of an ionic conductor. The results are presented and discussed together with the example of methylsulfonate as a relatively small anion and polystyrenesulfonate as a large anion. Received: 28 July 1998 / Accepted: 22 February 1999  相似文献   

17.
This study reports the development of iron‐chelated semiconducting polycomplex nanoparticles (SPFeN) for photoacoustic (PA) imaging‐guided photothermal ferrotherapy of cancer. The hybrid polymeric nanoagent comprises a ferroptosis initiator (Fe3+) and an amphiphilic semiconducting polycomplex (SPC) serving as both the photothermal nanotransducer and iron ion chelator. By virtue of poly(ethylene glycol) (PEG) grafting and its small size, SPFeN accumulates in the tumor of living mice after systemic administration, which can be monitored by PA imaging. In the acidic tumor microenvironment, SPFeN generates hydroxyl radicals, leading to ferroptosis; meanwhile, under NIR laser irradiation, it generates localized heat to not only accelerate the Fenton reaction but also implement photothermal therapy. Such a combined photothermal ferrotherapeutic effect of SPFeN leads to minimized dosage of iron compared to previous studies and effectively inhibits the tumor growth in living mice, which is not possible for the controls.  相似文献   

18.
Semiconducting polymer nanoparticles (SPNs) have evolved into a new class of photonic materials with great potential for biomedical applications. Depending on the polymer structures, SPNs can be developed into optical agents for fluorescence and chemiluminescence imaging, photosensitizers for photodynamic therapy, and heat converters for photothermal therapy. In this feature article, recent work is summarized on the development of SPNs for in vivo photoacoustic (PA) imaging, a state‐of‐the‐art imaging modality that converts light energy into mechanical acoustic waves to provide deep tissue penetration. The structure–property relationship and doping approaches are discussed to reveal the importance of promoting nonradiative decay in amplifying the PA brightness of SPNs. Moreover, their imaging applications, including lymph node mapping, tumor imaging, and monitoring of pathological indexes, are highlighted. These studies demonstrate that SPNs can serve as versatile PA agents for advanced molecular imaging applications.

  相似文献   


19.
Summary: A simple method to prepare surfactant‐free and solvent‐free semiconducting polymer particles by using an environmentally benign supercritical carbon dioxide (scCO2) process is reported. The process of the rapid expansion of supercritical solutions (RESS) is used to produce spherical particles of poly[2‐(3‐thienyl)acetyl 3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctanoate] (PSFTE), 50–500 nm in size, from 0.1–0.5 wt.‐% PSFTE solutions in CO2 at pre‐expansion temperatures of 40 °C and pre‐expansion pressures of 276 bar.

An FESEM image of PSFTE particles produced by the RESS process with CO2.  相似文献   


20.
徐丽金 《应用化学》1994,11(6):45-48
粒径为0.02~10μm的半导体氧化锡粉末在真空中充分脱气和施加高于40MPa压力可获得重现性较好的直流电阻。无锑掺杂氧化锡粉末的直流电阻随试样冷却吸附的温度而异,讨论了多晶氧化锡粉末的结构对电阻测定的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号