首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A canonical Monte Carlo simulation is performed to investigate the microstructure and the electrical double layer (EDL) of polyelectrolytes around macroions in the bulk systems based on the primitive model. We explore the influences of particles size, chain length, and charge density of polyelectrolytes on the microscopic behavior of the macroions-polyelectrolytes systems. The simulation results show that the surface charge density and the chain length of the polyelectrolytes are two key factors that affect the microstructure of polyelectrolytes around the macroions and potential of mean force between the macroions as well as the zeta potential of the spherical EDL constructed by polyelectrolytes. The high surface charge density of a polyelectrolyte leads to the polyelectrolyte acting as a bridge for the aggregation of macroions, causing the presence of the attraction between macroions. The polyelectrolytes with a long chain length present a cooperativity effect for the adsorption of the polyelectrolytes on the surface of the macroions. Furthermore, the two key factors both induce the overcharge of the macroions. The longer the chain length and the higher surface charge density of the polyelectrolytes, the stronger is the overcharge.  相似文献   

2.
We consider within a modified Poisson-Boltzmann theory an electrolyte, with different mixtures of NaCl and NaI, near uncharged and charged solid hydrophobic surfaces. The parametrized potentials of mean force acting on Na+, Cl-, and I- near an uncharged self-assembled monolayer were deduced from molecular simulations with polarizable force fields. We study what happens when the surface presents negative charges. At moderately charged surfaces, we observe strong co-ion adsorption and clear specific ion effects at biological concentrations. At high surface charge densities, the co-ions are pushed away from the interface. We predict that Cl- ions can also be excluded from the surface by increasing the concentration of NaI. This ion competition effect (I- versus Cl-) may be relevant for ion-specific partitioning in multiphase systems where polarizable ions accumulate in phases with large surface areas.  相似文献   

3.
The structure and phase behavior of oppositely charged macroions in solution have been studied with Monte Carlo simulations using the primitive model where the macroions and small ions are described as charged hard spheres. Size and charge symmetric, size asymmetric, and charge asymmetric macroions at different electrostatic coupling strengths are considered, and the properties of the solutions have been examined using cluster size distribution functions, structure factors, and radial distribution functions. At increasing electrostatic coupling, the macroions form clusters and eventually the system displays a phase instability, in analogy to that of simple electrolyte solutions. The relation to the similar cluster formation and phase instability occurring in solutions containing oppositely charged polymers is also discussed.  相似文献   

4.
Charged lipid membranes commonly consist of a mixture of charged and zwitterionic lipids. We suggest a model that characterizes the influence of the dipolar nature of the zwitterionic lipid species on the electrostatic adsorption of macroions onto mixed membranes in the fluid state. The model is based on Poisson-Boltzmann theory which we have modified so as to account for the dipolar character of the zwitterionic lipids. In addition the membrane lipids are allowed to adjust their lateral distribution upon macroion adsorption. We consider and compare two experimentally relevant scenarios: cationic macroions adsorbed onto anionic membranes and anionic macroions adsorbed onto cationic membranes. We show that in the former case the adsorption strength is slightly weakened by the presence of the headgroup dipoles of the zwitterionic lipids. Here, macroion-induced lipid demixing is more pronounced and the lipid headgroups tilt away from a cationic macroion upon adsorption. In contrast, for the adsorption of anionic macroions onto a cationic membrane the zwitterionic lipids strongly participate in the electrostatic interaction between membrane and macroion, thus enhancing the adsorption strength significantly (we predict up to 20%). Consistent with that we find less lateral demixing of the charged lipids and a reorientation of the dipoles of the zwitterionic headgroups towards the anionic macroions. Our results may be of importance to understand the differences in the electrostatic adsorption of proteins/peptides onto cellular membranes versus complex formation between cationic membranes and DNA.  相似文献   

5.
The volume and structural changes upon replacement of oppositely charged network counterions for oppositely charged macroions in cross-linked polyelectrolyte gels have been investigated by Monte Carlo simulations using a coarse-grained model. Initially, the gel deswells, but after an approximately equivalent amount of macroions, the gel starts to swell again. The deswelling effect is greatest for small and highly charged macroions. The role of different network properties on the deswelling has also been examined. The initial deswelling is understood in terms of a replacement of confined counterions with macroions, thereby reducing the osmotic pressure originating from the counterions. At these conditions, macroions are located near network nodes with various degrees of network chains wrapping them. At charge equivalence, a profound change in the network structure has appeared. At these conditions, the cohesive electrostatic interaction and the excluded volume effect of the macroions strongly influence the equilibrium volume of the gel. Our model system reproduces many characteristic experimental observations of polyelectrolyte gels containing oppositely charged surfactants.  相似文献   

6.
An electrostatic self‐assembly (ESA) multilayer film of a diazo resin (DR) was fabricated by direct surface charge reversal. DR is first adsorbed onto the substrate via electrostatic interaction, and in the chemical activation step, the sign of the surface charge is directly reversed by converting the positively charged diazonium ion to the negatively charged diazo sulfonate ion under mild conditions. By repeating adsorption and chemical activation step, the film grows regularly layer by layer.  相似文献   

7.
We have studied the effect of the pH and surface charge of mica on the adsorption of the positively charged weak polyelectrolyte (PE) poly(2-vinylpyridine) (P2VP) using atomic force microscopy (AFM) single-molecule experiments. These AFM experiments were performed in situ directly under aqueous media. If the mica's surface and the PE are oppositely charged (pH > 3), the PE forms a flat adsorbed layer of two-dimensionally (2D) equilibrated self-avoiding random walk coils. The adsorbed layer's structure remains almost unchanged if the pH is decreased to pH 3 (the mica's surface is weakly charged). At pH 2 (the mica surface is decorated by spots of different electrical charges), the polyelectrolyte chains take the form of a 2D compressed coil. In this pH range, at an increased P2VP concentration in solution, the PE segments preferentially adsorb onto the top of previously adsorbed segments, rather than onto an unoccupied surface. We explain this behavior as being caused by the heterogeneous character of the charged surface and the competitive adsorption of hydronium ions. The further increase of polymer concentration results in a complete coverage of the mica substrate and the charge overcompensation by P2VP chains adsorbed on the similarly charged substrate, due to van der Waals forces.  相似文献   

8.
The importance of substrate chemistry and structure on supported phospholipid bilayer design and functionality is only recently being recognized. Our goal is to investigate systematically the substrate-dependence of phospholipid adsorption with an emphasis on oxide surface chemistry and to determine the dominant controlling forces. We obtained bulk adsorption isotherms at 55 degrees C for dipalmitoylphosphatidylcholine (DPPC) at pH values of 5.0, 7.2, and 9.0 and at two ionic strengths with and without Ca(2+), on quartz (alpha-SiO(2)), rutile (alpha-TiO(2)), and corundum (alpha-Al(2)O(3)), which represent a wide a range of points of zero charge (PZC). Adsorption was strongly oxide- and pH-dependent. At pH 5.0, adsorption increased as quartz < rutile approximately corundum, while at pH 7.2 and 9.0, the trend was quartz approximately rutile < corundum. Adsorption decreased with increasing pH (increasing negative surface charge), although adsorption occurred even at pH > or = PZC of the oxides. These trends indicate that adsorption is controlled by attractive van der Waals forces and further modified by electrostatic interactions of oxide surface sites with the negatively charged phosphate ester (-R(PO(4)-)R'-) portion of the DPPC headgroup. Also, the maximum observed adsorption on negatively charged oxide surfaces corresponded to roughly two bilayers, whereas significantly higher adsorption of up to four bilayers occurred on positively charged surfaces. Calcium ions promote adsorption beyond a second bilayer, regardless of the sign of oxide surface charge. We develop a conceptual model for the structure of the electric double layer to explain these observations.  相似文献   

9.
Bidispersity of binary suspensions of charged macroions due to different sizes and charges are reduced into one-component model (OCM) using Schulz distribution function. Ordering in charged macroions has been studied using rescaled mean spherical approximation (RMSA) method with modified Derjaguin, Landau, Verwey and Overbeek (DLVO) potential. The results obtained are compared with the experiment, weight-average and Roger–Young (RY) schemes. It is inferred that Schulz distribution function is a plausible model to average out size and charges of macroions to study the structural behavior of the binary suspension of macroions. An ordering with co-ordination number 12 has been reported in the binary suspension of charged macroions.  相似文献   

10.
An enzyme charge ladder was used to examine the role of electrostatic interactions involved in biocatalysis at the solid-liquid interface. The reactive substrate consisted of an immobilized bovine serum albumin (BSA) multilayer prepared using a layer-by-layer technique. The zeta potential of the BSA substrate and each enzyme variant was measured to determine the absolute charge in solution. Enzyme adsorption and the rate of substrate surface hydrolysis were monitored for the enzyme charge ladder series to provide information regarding the strength of the enzyme-substrate interaction and the rate of interfacial biocatalysis. First, each variant of the charge ladder was examined at pH 8 for various solution ionic strengths. We found that for positively charged variants the adsorption increased with the magnitude of the charge until the surface became saturated. For higher ionic strength solutions, a greater positive enzyme charge was required to induce adsorption. Interestingly, the maximum catalytic rate was not achieved at enzyme saturation but at an invariable intermediate level of adsorption for each ionic strength value. Furthermore, the maximum achievable reaction rate for the charge ladder was larger for higher ionic strength values. We propose that diffusion plays an important role in interfacial biocatalysis, and for strong enzyme-substrate interaction, the rate of diffusion is reduced, leading to a decrease in the overall reaction rate. We investigated the effect of substrate charge by varying the solution pH from 6.1 to 8.7 and by examining multiple ionic strength values for each pH. The same intermediate level of adsorption was found to maximize the overall reaction rate. However, the ionic strength response of the maximum achievable rate was clearly dependent on the pH of the experiment. We propose that this observation is not a direct effect of pH but is caused by the change in substrate surface charge induced by changing the pH. To prove this hypothesis, BSA substrates were chemically modified to reduce the magnitude of the negative charge at pH 8. Chemical modification was accomplished by the amidation of aspartic and glutamic acids to asparagine and glutamine. The ionic strength response of the chemically modified substrate was considerably different than that for the native BSA substrate at an identical pH, consistent with the trend based on substrate surface charge. Consequently, for substrates with a low net surface charge, the maximum achievable catalytic rate of the charge ladder was relatively independent of the solution ionic strength over the range examined; however, at high net substrate surface charge, the maximum rate showed a considerable ionic strength dependence.  相似文献   

11.
This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.  相似文献   

12.
Mean-field theory is used to derive criteria for the adsorption of a weakly charged polyelectrolyte molecule from salt solution onto surfaces patterned with charge and topography. For flat surfaces patterned with periodic arrays of charged patches, the adsorbed layer thickness predicted using mean-field theory and that found by Brownian dynamics simulations are in quantitative agreement in the strong-adsorption regime, which corresponds to sufficiently small kappa or sufficiently large |sigma(eff)q|, where kappa is the inverse Debye screening length, sigma(eff) is an effective surface charge density, and q is the charge on each segment of the polyelectrolyte. Qualitative agreement is obtained in the weak-adsorption regime, and for the case where surfaces are patterned with both charge and topography. For uniformly charged, sinusoidally corrugated surfaces, the theory predicts that the critical temperature required for adsorption can be greater than or less than the corresponding value for a flat surface depending on the relative values of kappa and the corrugation wave number. If the surface charge is also allowed to vary sinusoidally, then adsorption is predicted to occur only when the topography crests have a surface charge opposite to that of the polyelectrolyte. Surfaces patterned with rectangular indentations having charged bottoms which are separated by flat charged plateaus are investigated as well. Adsorption is predicted to occur even when the net surface charge is zero, provided that the plateaus have a charge opposite to that of the polyelectrolyte. If the charge on the plateaus and polyelectrolyte is the same, adsorption may still occur if electrostatic attraction from the indentation bottoms is sufficiently strong.  相似文献   

13.
The effect of various ions related to the Hofmeister series (HS) on different properties of a cationic latex covered with a protein (IgG) is analyzed in this study. NaNO3, NH4NO3, and Ca(NO3)2 were used to compare the specificity of the cations, and NaCl, NaSCN, NaNO3, and Na2SO4, to compare the specificity of the anions. Two pH values, 4 and 10, were chosen to analyze the behavior of these ions acting as counter- and co-ions. At pH 4, the total surface charge is positive, whereas at pH 10 it is negative. Three different phenomena have been studied in the presence of these Hofmeister ions: (1) colloidal aggregation, (2) electrophoretic mobility, and (3) colloidal restabilization. The specific effect of the ions was clearly observed in all experiments, obtaining ion sequences ordered according to their specificity. The most important parameter for ion ordering was the sign of the charge of the colloidal particle. Positively charged particles displayed an ion order opposite that observed for negatively charged surfaces. Another influential factor was the hydrophobic/hydrophilic character of the particle surface. IgG-latex particle surfaces at pH 10 were more hydrophilic than those at pH 4. The SCN- ion had a peculiar specific effect on the phenomena studied (1)-(3) at pH 10. With respect to the restabilization studies at high ionic strengths, new interesting results were obtained. Whereas it is commonly known that cations may provoke colloidal restabilization in negative particles when they act as counterions, our experiments demonstrated that such restabilization is also possible with positively charged particles. Likewise, restabilization of negative surfaces induced by the specific effect of chaotropic anions (acting as co-ions) was also observed.  相似文献   

14.
采用分子动力学模拟方法研究了大离子与聚电解质/表面活性剂复合物的相互作用, 考察了大离子的电性、直径、表面电荷、浓度等对其与复合物相互作用的影响. 结果表明, 与聚电解质所带电性相同的大离子对复合物作用不明显, 只有当大离子所带电荷较多时, 才会引导少量表面活性剂从复合物中脱离. 当大离子所带电荷与聚电解质所带电荷电性相反时, 大离子的加入会诱导复合物的解离, 表面活性剂从复合物中释放出来, 甚至导致聚电解质/表面活性剂复合物的完全解离, 从而形成聚电解质/大离子复合物; 大离子所带电荷越多, 诱导作用越明显. 大离子的直径及浓度对其与复合物之间的作用也有很大的影响, 对于所带电荷数相同的大离子而言, 直径越小, 其与复合物的作用越显著, 越容易引导表面活性剂从复合物中解离, 若大离子的表面电荷密度相同, 大离子直径越小, 反而与复合物的作用越弱; 大离子浓度越高, 越易引起复合物的解离, 复合物中聚电解质链上结合的大离子数增多直至饱和, 相应的会出现电荷反转现象.  相似文献   

15.
In this study, highly permeable ion-selective membranes are prepared via immobilization of polyelectrolyte multilayer networks within the inner pore structure of a microporous (pore size = 0.2 microm) support. Electrostatic layer-by-layer assembly is achieved through alternate adsorption of cationic and anionic polyelectrolytes under convective flow conditions. To initiate pore assembly, the first layer consists of covalently bound charged polypeptides (poly(L-glutamic acid) (PLGA) or poly(L-lysine) (PLL)) establishing a charged support for subsequent adsorption. Nonstoichiometric immobilization of charged multilayers within a confined pore geometry leads to an enhanced volume density of ionizable groups in the membrane phase. This overall increase in the effective charge density allows for Donnan exclusion of ionic species (especially divalent co-ions) using microporous materials characterized by permeability values that exceed conventional membrane processes. Multilayer assemblies are fabricated using both PLGA/PLL and synthetic polyelectrolytes (poly(styrenesulfonate)/poly(allylamine)) in an attempt to compare the level of adsorption and separation properties of the resulting materials. The role of salt concentration in the carrier solvent on overall polyelectrolyte adsorption was examined to determine its effect on both solute (Cl-, SO4(2-), As(V)) and water transport. Constriction of the pore size induced by multilayer propagation was monitored through permeability measurements and dextran rejection studies at each stage of the deposition process.  相似文献   

16.
This work examines polyelectrolyte adsorption (exclusively driven by electrostatic attractions) for a model system (DMAEMA, polydimethylaminoethyl methacrylate, adsorbing onto silica) where the adsorbing polycation is more densely charged than the substrate. Variations in the relative charge densities of the polymer and substrate are accomplished by pH, and the polycation is of sufficiently low molecular weight that the adsorbed conformation is generally flat under all conditions examined. We demonstrate, quantitatively, that the charge overcompensation observed on the isotherm plateau can be attributed to the denser positive charge on the adsorbing polycation and that the ultimate coverage obtained corresponds to the adsorption of one oligomer onto each original negative silica charge, when the silica charge is most sparse, at pH 6. This limiting behavior breaks down at higher pHs where the greater silica charge density accommodates single chains adsorbing onto multiple negative sites. As a result of the greater substrate charge density and reduced polycation charge at higher pHs, the extent of charge overcompensation diminishes while the coverage increases on the plateau of the isotherm. Ultimately at the highest pHs, a regime is approached where the coil's excluded surface area, not surface charge, limits the ultimate coverage. In addition to quantifying the crossover from the charge-limiting to the area-limiting behaviors, this paper quantitatively reports adsorption-induced changes in bound counterion density and ionization at the interface, which were generally found to be independent of coverage for this model system.  相似文献   

17.
We developed chitosan based surfactant polymers that could be used to modify the surface of existing biomaterials in order to improve their blood compatibility. These polymers consist of a chitosan backbone, PEG side chains to repel non-specific protein adsorption, and hexanal side chains to facilitate adsorption and proper orientation onto a hydrophobic substrate via hydrophobic interactions. Since chitosan is a polycationic polymer, and it is thrombogenic, the surface charge was altered to determine the role of this charge in the hemocompatibility of chitosan. Charge had a notable effect on platelet adhesion. The platelet adhesion was greatest on the positively charged surface, and decreased by almost 50% with the neutralization of this charge. A chitosan surface containing the negatively charged SO(3)(-) exhibited the fewest number of adherent platelets of all surfaces tested. Coagulation activation was not altered by the neutralization of the positive charge, but a marked increase of approximately 5-6 min in the plasma recalcification time (PRT) was displayed with the addition of the negatively charged species. Polyethylene (PE) surfaces were modified with the chitosan surfactant resulting in a significant improvement in blood compatibility, which correlated to the increasing PEG content within the polymer. Adsorption of the chitosan surfactants onto PE resulted in approximately an 85-96% decrease in the number of adherent platelets. The surfactant polymers also reduced surface induced coagulation activation, which was indicated by the PEG density dependent increase in PRTs. These results indicate that surface modification with our chitosan based surfactant polymers successfully improves blood compatibility. Moreover, the inclusion of either negatively charged SO(3)(-) groups or a high density of large water-soluble PEG side chains produces a surface that may be suitable for cardiovascular applications.  相似文献   

18.
A Brownian dynamics (BD) simulation is performed to investigate the effect of the bridging conformation of a polyelectrolyte (PE) with two charged heads (two-heads PE) on the radial distribution function (RDF) and diffusion behavior of macroions on the basis of the coarse grained model. For comparison, the system containing macroions and the PE with only one charged head (one-head PE) is also investigated. The simulation results indicate that, at low concentrations, the bridging effect of the two-heads PE chain leads to correlation of macroions. The reason is that at low concentration the gyration radius of the PE chain is less than the average distance between two macroions. When the two-heads PE chains are adsorbed on different macroions, the bridging effect of the PE chain dominates the RDF and diffusion behavior of the macroions. With the increase of the concentration of the system, when the gyration radius of the PE chain is greater than the average distance between two macroions, the bridging effect of the PE chain becomes trivial. By investigating the mechanism of the two-heads PE chain affecting the static and dynamic properties of the macroions, we can provide useful information for the synthesis of stabilizers and destabilizers of colloidal particles.  相似文献   

19.
The adsorption of sodium poly(4-styrene sulfonate) on oppositely charged beta-FeOOH particles is studied by electrooptics. The focus of this paper is on the release of condensed counterions from adsorbed polyelectrolyte upon surface charge overcompensation. The fraction of condensed Na+ counterions on the adsorbed polyion surface is estimated according to the theory of Sens and Joanny and it is compared with the fraction of condensed counterions on nonadsorbed polyelectrolyte. The relaxation frequency of the electrooptical effect from the polymer-coated particle is found to depend on the polyelectrolyte molecular weight. This is attributed to polarization of the layer from condensed counterions on the polyion surface, being responsible for creation of the effect from particles covered with highly charged polyelectrolyte. The number of the adsorbed chains is calculated also assuming counterion condensation on the adsorbed polyelectrolyte and semiquantative agreement is found with the result obtained from the condensed counterion polarizability of the polymer-coated particle. Our findings are in line with theoretical predictions that the fraction of condensed counterions remains unchanged due to the adsorption of highly charged polyelectrolyte onto weakly charged substrate.  相似文献   

20.
Cross-linked cellulose nanofibril (CNF) aerogel with positive and negative surface charge was prepared. For the surface charge modification of CNF from its intrinsic negative charge to positive charge, glycidyltrimethylammonium chloride was used. To stabilize the network structure of CNF aerogel in aqueous condition, maleic acid and sodium hypophosphite cross-linking treatment was applied. The ion adsorption properties of positive and negative charged cross-linked CNF aerogels were evaluated using the Langmuir adsorption model, and it was affected by pH of the ion solution. The maximum ion adsorption capacity of negatively charged cross-linked CNF aerogel was 0.79 mmol/g for the nickel cation while that of the positively charged cross-linked aerogel was 0.62 mmol/g for the permanganate anion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号