首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究   总被引:3,自引:1,他引:3  
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。  相似文献   

2.
3.
基于SiPLS算法的近红外光谱检测梨可溶性固形物含量   总被引:3,自引:0,他引:3  
为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较.结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量.  相似文献   

4.
近红外光谱技术定量测定杨梅汁可溶性固形物   总被引:2,自引:1,他引:2  
采用近红外光谱分析技术对浙江省不同产地的杨梅汁进行了光谱测定和定量分析,通过计算样品的杠杆值、学生残差和马氏距离来判别异常样品,采用偏最小二乘法(PLS)对杨梅汁的可溶性固形物进行建模分析,选取不同的分辨率和波段范围对光谱进行有效的信息提取和分析,确定了最佳的回归因子数和用于定量分析的最优波段范围。结果显示: 杨梅汁样品中有一个为异常样品,在建模时予以剔除;用于杨梅汁可溶性固形物检测的最佳分辨率和最优波段分别是4 cm-1和4 000~12 267.46 cm-1,最佳的回归因子数是8,该PLS模型的相关系数为0.957 85,校正均方根误差(RMSEC)、预测均方根误差(RMSEP)和交互验证标准偏差(RMSECV)分别是0.431,0.925和1.07°Brix。研究表明近红外光谱检测技术能用于杨梅汁可溶性固形物的定量分析。  相似文献   

5.
氯化钠近红外光谱检测技术研究   总被引:1,自引:0,他引:1  
氯化钠(NaCl)近红外光谱分析在生物医学上有着重要的意义。钠离子(Na+)是人体血液中电解质的主要成分,而电解质有助于维持身体的酸碱平衡。采用近红外光谱技术测量氯化钠浓度,在分析钠离子近红外光谱检测机理的基础上,选定波长建立了NaCl浓度线性回归预测模型,同时为了减小温度对水吸收的扰动,使用选定光谱区建立偏最小二乘(PLS)非线性回归模型。结果表明所建立的非线性校正模型决定系数(R2)=99.82%,交叉验证均方误差(RMSECV)=14.5,剩余预测偏差(RPD)=23.7。完全满足日常生化检测精度要求,该技术可以应用于医院实验室钠离子浓度定量分析。  相似文献   

6.
近红外光谱检测已被应用于水泥生料成分的快速检测,但现场环境中的湿度等因素会对光谱产生干扰,从而降低检测精度。为了提高检测精度,在实验分析湿度对水泥生料近红外光谱检测影响的基础上研究了补偿方法。在水泥厂选取了24份水泥生料样本,其中18份作为校正集,6份作为验证集;水泥生料中的有效成分为SiO2,Al2O3,Fe2O3和CaCO3,各成分含量的标准值由X射线荧光光谱分析测出。首先,将校正集的18份样本每份重复装样测5次光谱,用得到的90个光谱建立模型Ⅰ;再每份样品制作5个湿度梯度样本,其获得过程为,先将样本放置在电加热平台上,用玻璃棒将样本摊平,180℃下加热30 min,再将样本放置在散热片上进行降温,待样品恢复室温后取出进行第一次光谱扫描,得到1个光谱,将测量后的样本放入搅拌器,使用装有去离子水的喷雾器对其喷雾两次,然后搅拌30 s混合均匀,测量混合后的样本得到下一个光谱,重复该过程,得到具有湿度梯度的5个光谱。所有样本均采用烘干法进行湿度测量,样本湿度变化区间在0.6%~2%以内。对每个湿度梯度的样本测量1次,用得到的这90个光谱建立模型Ⅱ。然后,将验证集的6份样本每份制作5个湿度梯度,获取方式与校正集相同,对每个湿度梯度的样本测量1次,得到30个光谱。所有光谱均采用多元散射校正预处理,拟合波段选择4000~5000 cm^-1,建模方法采用偏最小二乘法。比较同一份样本的5个湿度梯度,可以看到在5200 cm^-1处光谱差异最大,在其他位置也有肉眼可见的明显差异,因此,湿度变化对全波段光谱有明显的影响。最后,将这30个光谱输入模型Ⅰ与模型Ⅱ进行验证,并对比模型Ⅰ与模型Ⅱ的预测均方根误差RMSEP。模型Ⅱ中SiO2,Al2O3,Fe2O3和CaCO3的预测均方根误差RMSEP比模型Ⅰ分别减小了25%,31.3%,33.3%和25%。实验结果表明,水泥生料样本湿度对近红外光谱模型的预测结果具有一定的影响,采用具有湿度梯度的样本进行建模可有效降低湿度对预测结果的影响。  相似文献   

7.
人体内钠盐的含量影响血糖代谢且与糖尿病具有较高的相关性。因此,在进行血糖的近红外光谱无创检测时,不仅要考虑血液中大颗粒及大分子物质对光谱的吸收和散射影响,也应从分子结构层面上分析小分子物质对葡萄糖分子结构及其特征吸收的影响。基于声光可调谐滤波器(AOTF)的高精度近红外光谱采集系统,测量并研究了在水溶液环境下氯化钠(NaCl)对葡萄糖分子结构及其近红外特征吸收的影响。首先,测量含有不同NaCl含量的葡萄糖水溶液透射光谱,分别采用纯水和同浓度 NaCl 样本进行背景修正,实验表明,在水溶液环境中 NaCl会改变水分子和葡萄糖分子特征吸收峰的位置和强度;对不含NaCl和含有NaCl的糖水样本分别扣除纯水和同浓度NaCl样本后进行二维相关光谱分析,同步谱的切线谱显示NaCl减弱了葡萄糖分子在1 400和1 520~1 700 nm处的特征吸收。最后,通过偏最小二乘回归模型定量分析NaCl对葡萄糖预测精度的影响,发现模型的预测均方根误差随NaCl含量的增加而增大,并且含NaCl的样本与不含NaCl的样本对葡萄糖浓度预测值之差的平均值与加入的NaCl含量近似为线性关系。结果表明,在水溶液环境下NaCl分子会改变葡萄糖分子键状态并影响其特征吸收,从而降低模型的预测精度。若将NaCl含量作为变量因子,有助于提升血糖的近红外光谱无创检测精度。  相似文献   

8.
多成分有机气体的近红外光谱定量检测方法   总被引:3,自引:0,他引:3  
在环境检测领域,运用近红外光谱分析技术对多成分挥发性有机物进行连续的在线监测具有重要意义。本文分析了三种挥发性有机物——丙烷、丙烯和甲苯的近红外光谱特征和丙烯浓度与吸光度的线性关系,采用线性回归建模方法——偏最小二乘法对丙烷、丙烯和甲苯混合气体存在特征吸收的近红外光谱(1 620~1 750 nm)进行了建模分析,基于该模型预测了验证集样品中三种气体的含量,并对模型进行了评价。实验结果表明,近红外光谱技术可以方便、准确的定量分析有机性挥发气体的多组分含量,可以应用于多成分挥发性有机物的连续在线监测。  相似文献   

9.
番茄是一种营养丰富且深受人们喜爱的果蔬,在全球都得到了广泛的种植,而我国番茄产销量稳居全球首位。番茄不仅在人们的生活中扮演了一个重要的角色,在工业生产中也占据了举足轻重的位置,我国番茄的出口也在不断增加。番茄的糖分、酸度、维生素C及可溶性固形物含量是反映番茄内部品质的重要评价指标,而可溶性固形物含量是这些内部品质的总和,能够较好地表征番茄的内部品质。因此,实现对番茄可溶性固形物含量的快速检测对番茄的工业生产和日常生活有着巨大的帮助。基于化学原理的传统检测方法会对番茄样品产生不可逆的破坏,且耗时耗力,难以应对我国现代工业生产的需要。因此,寻求番茄内部品质的快速无损检测技术成为了亟待解决的问题。近年来,近红外光谱分析在多个领域得到了广泛的应用;基于近红外光谱检测方法对反映番茄甜度的可溶性固形物含量进行了相关性建模和预测研究。实验搭建了近红外光谱检测平台,选择了255个不同成熟度和品种的番茄样本,每个样本采集了光谱数据和可溶性固形物含量值。研究对比了SNV, MSC, NOR和SG等光谱数据预处理方法,并采用K-S算法划分建模校正集和验证集。同时,为提高检测可靠度和建模效率,研究对比了CAR...  相似文献   

10.
在近红外光谱分析过程中,单台仪器在不同时间的波长变化及多台仪器间的波长一致与否会对化学计量学定标模型的校正及传递效果产生影响,上述问题可以统一为波长漂移对定标模型的影响.以分析小麦粉中粗蛋白含量为例,首先结合不同谱区光谱数据,利用偏最小二乘回归(PLSR)方法建立了两个定标模型.再由计算机生成不同类型、不同幅度的波长漂...  相似文献   

11.
西瓜可溶性固形物含量的无损检测对提升其内部品质十分重要。为实现近红外光谱对小型西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对预测模型的影响,以“京秀”西瓜为研究对象,分别采集赤道、瓜脐和瓜梗三部位的漫透射光谱信息,利用偏最小二乘算法(PLS)建立并比较单一检测部位和混合所有检测部位的西瓜可溶性固形物近红外光谱预测模型,并分别采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对西瓜可溶性固形物近红外光谱变量进行特征波长筛选。结果显示,相比于单一检测部位的模型,混合所有检测部位的校正集样本建立的模型取得了较优的预测结果。同时,利用CARS算法筛选的42个特征波长变量建模,对三种检测部位预测集样本的预测结果分别为赤道RP=0.892和RMSEP= 0.684 °Brix,瓜脐RP=0.905和RMSEP= 0.629 °Brix,瓜梗RP=0.899和RMSEP= 0.721 °Brix。模型得到了很大的简化,且预测精度较高。比较发现,利用SPA算法筛选的19个特征波长变量所建模型的预测精度较低。利用三种检测部位的西瓜样本建立的PLS混合预测模型,结合CARS算法进行有效特征波长变量筛选,可提高西瓜可溶性固形物预测模型的精度,实现西瓜表面各部位可溶性固形物含量的准确预测,减小检测部位差异对近红外光谱预测模型的影响。结果为今后开发便携式设备检测西瓜表面各部位可溶性固形含量提供参考依据。  相似文献   

12.
可溶性固形物(SSC)是脐橙重要内部品质之一。采用QualitySpec型光谱仪在350~1000 nm波段范围采集脐橙的可见/近红外漫透射光谱,采用CARS(competitive adaptive reweighted sampling)变量选择方法筛选出与脐橙SSC相关的重要变量,并与无信息变量消除(UVE)及连续投影算法(SPA)比较。最后,对选择的38个重要波长变量应用偏最小二乘(PLS)回归建立脐橙SSC预测模型,并对未参与建模的75个样品进行预测。研究结果表明,CARS方法优于UVE及SPA变量选择方法,能有效地筛选出重要波长变量。CARS-PLS建立的SSC预测模型优于全光谱的PLS模型,其校正集及预测集的相关系数分别为0.948和0.917,均方根误差分别为0.347%和0.394%。因此,可见/近红外漫透射光谱结合CARS方法可以预测脐橙可溶性固形物,CARS变量选择方法能有效简化预测模型和提高模型的预测精度。  相似文献   

13.
在利用可见-近红外漫透射光谱技术对苹果的可溶性固形物(SSC)检测时,由于卤素灯光照射在苹果上的位置不同,采集到的苹果光谱中所包含的可溶性固形物信息不同,导致模型得出的结果不同;找到一个最好的苹果光照位置有利于得到最佳的可溶性固形物评价模型。利用多模式可调节的光学结构在相同的实验环境和实验条件下采集了购买于同一水果批发商的尺寸相近但照射位置不同的两批苹果的近红外漫透射光谱,探索苹果可溶性固形物模型建立过程中最佳的照射位置从而得到最佳位置的可溶性固形物评价模型。通过对样品进行光谱采集、糖度真值采集并结合化学计量学方法得出最佳的建模位置,照射位置为上部且光谱没有预处理时的偏最小二乘回归(PLS)模型性能为RMSEC为0.288 2,RMSEP为0.343 6,Rc为0.960 6,Rp为0.934 9;照射位置为斜上部且光谱没有预处理的PLS模型性能为RMSEC为0.340 7,RMSEP为0.513 3,Rc为0.931 1,Rp为0.863 6;照射位置为上部且光谱没有预处理的主成分分析回归(PCR)模型性能为RMSEC为0.573 6,RMSEP为0.601 4,Rc为0.842 4,Rp为0.800 7;照射位置为斜上部且光谱没有预处理的PCR模型性能为RMSEC为0.709 2,RMSEP为0.797 4,Rc为0.701 4,Rp为0.670 7,最佳照射位置为苹果上部;进一步地采用多种预处理方法对照射位置为上部的PLS模型进行对比,得到最优模型为MSC-PLS模型,其RMSEC为0.2264 4,RMSEP为0.301 5,Rc为0.966 9,Rp为0.949 9。最后再对相同的46个苹果进行相同的实验操作得到光谱、真值后,代入到建立的MSC-PLS模型中进行外部验证,结果显示外部验证的相关系数为0.930 58,验证均方根误差为0.843 59,验证了建立的MSC-PLS模型的稳定性和可靠性,进一步表明光谱采集位置为苹果上部时的近红外漫透射模型有很好的预测能力,该研究为预测苹果可溶性固形物的检测提供了技术支持。  相似文献   

14.
近红外漫反射光谱检测梨内部指标可溶性固性物的研究   总被引:2,自引:0,他引:2  
旨在建立近红外漫反射光谱与梨水果内部可溶性固形物之间的关系,以评价近红外漫反射光谱在测量梨水果内部指标可溶性固形物的应用价值。应用近红外光谱(350~1 800 nm),采用多元线性回归(MLR)、主成分回归(PCR)和偏最小二乘法(PLS)三种不同的数学校正方法对梨水果的可溶性固形物(SSC)进行了定量分析,并且对梨水果不同位置的吸光度原始光谱,一阶微分和二阶微分三种不同预处理情况下的模型进行了最优化分析。在梨水果赤道部位预测结果较为理想,采用一阶微分预处理方法下应用PLS方法。研究结果为预测集的相关系数为0.851 7, 预测样本均方根误差为0.879 3。研究表明,近红外漫反射光谱可以作为一种准确、可靠和无损的检测方法用于评价梨水果内部指标可溶性固形物。  相似文献   

15.
果皮对脐橙可溶性固形物可见/近红外检测精度的影响   总被引:3,自引:0,他引:3  
利用可见/近红外半透射光谱技术对未剥皮(完整)和剥皮脐橙的可溶性固形物(SSC)进行检测,探索果皮对脐橙SSC检测精度的影响。采用QualitySpec型光谱仪获取未剥皮和剥皮脐橙在350~1 000 nm波段的可见/近红外光谱,并从光谱和模型性能两方面分析果皮的影响。对未剥皮和剥皮脐橙平均光谱进行比较,并提取前20个主成分进行多元方差分析;应用偏最小二乘(PLS)回归结合不同预处理方法分别建立未剥皮和剥皮脐橙SSC的预测模型,对预测模型性能进行比较,并对预测集样本的预测残差平方进行方差分析。结果表明,在5%置信水平下,果皮对脐橙SSC检测精度的影响是显著的。未剥皮和剥皮脐橙SSC的最优PLS模型的预测集相关系数和预测均方根误差分别为0.888,0.456%和0.944,0.324%。  相似文献   

16.
借助近红外透射光谱技术得到香精样品的原始光谱,选取波段范围为8 800~8 540和7 500~5 085 cm-1,用主成分分析(PCA)法定性识别其中是否添加DEHP或DINP,正确率100%。同时测定了DEHP和DINP(浓度范围在0~100 mg·kg-1之间)在食用香精中的含量,并以偏最小二乘法(PLS)建立定量分析模型,DEHP和DINP预测结果的相对误差分别在-17.6%~15.8%和-7.6%~9.9%之间,预测均方根误差分别为1.39和0.98。为检测食用香精中增塑剂的含量提供了一种可同时定性与定量的快速、简便、廉价、准确的分析方法。  相似文献   

17.
可见/近红外光谱法无损检测赣南脐橙可溶性固形物   总被引:10,自引:4,他引:10  
应用可见/近红外光谱法对赣南脐橙可溶性固形物进行了无损检测研究。通过主成分分析,获取光谱的有效信息,将其作为人工神经网络的输入变量进行非线性建模。90个建模样品训练结果是,样品参考值与预测值之间的相关系数为0.9147,训练均方差为0.5203;38个未知样品预测结果是:样品参考值与预测值之间的相关系数为0.9033,预测均方差为0.6964,相对预测偏差4.5709%。实验结果表明基于人工神经网络的可见/近红外光谱法无损检测赣南脐橙可溶性固形物是可行的。  相似文献   

18.
酿酒葡萄成熟度是确定葡萄采收期的重要品质指标,针对酿酒葡萄大田中成熟度检测难度大的问题,利用可见/近红外(Vis/NIR)光谱技术和化学计量学,研究了酿酒葡萄可溶性固形物含量(SSC)与光谱数据之间的内在联系。采用USB2000+光谱仪获取5种酿酒葡萄及其叶片在不同成熟时期的Vis/NIR光谱数据,通过OMNIC 8.0软件提取光谱数据,将化学值与光谱吸收率值通过TQ Analyst8.0软件建立模型。选取信噪比高的450~1 000 nm波段,利用PCA剔除异常光谱数据,将一阶导数(FD)、Savitzky-Golay卷积平滑(S-G)、多元散射校正(MSC)、标准正态变换(SNV)分别组合共4种方法用于光谱数据预处理。利用偏最小二乘(PLS)法分别建立了5种葡萄基于酿酒葡萄光谱数据的SSC预测模型,建立了5种葡萄基于冠层叶片光谱数据的SSC预测模型,对比了不同方式预处理后的建模效果,并选择最优预处理方式建模。最后用外部样本分别验证了SSC预测模型。结果表明,采用S-G平滑+FD+MSC的预处理方法时大多数预测模型性能达到最好。5种葡萄浆果校正集和验证集的R分别达到0.93和0.86以上,最高均方根误差分别为0.30和0.48,5种葡萄冠层叶片校正集和验证集的R分别达到0.73和0.65以上,最大均方根误差分别为0.95和0.75。5种葡萄浆果外部试验样本预测值与真实值间的平均RE最高为0.43%。基于酿酒葡萄浆果光谱的SSC预测模型具备良好的预测能力,优于基于酿酒葡萄冠层叶片光谱的SSC预测模型,SSC预测模型能够为酿酒葡萄成熟度评价研究提供理论参考。Vis/NIR光谱技术适用于在酿酒葡萄大田中快速、无损检测SSC。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号