首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The PDZ domain of proteins mediates a protein-protein interaction by recognizing the hydrophobic C-terminal tail of the target protein. One of the challenges put forth by the DREAM (Discussions on Reverse Engineering Assessment and Methods) 2009 Challenge consists of predicting a position weight matrix (PWM) that describes the specificity profile of five PDZ domains to their target peptides. We consider the primary structures of each of the five PDZ domains as a numerical sequence derived from graph-theoretic models of each of the individual amino acids in the protein sequence. Using available PDZ domain databases to obtain known targets, the graph-theoretic based numerical sequences are then used to train a neural network to recognize their targets. Given the challenge sequences, the target probabilities are computed and a corresponding position weight matrix is derived. In this work we present our method. The results of our method placed second in the DREAM 2009 challenge.  相似文献   

3.
Calmodulin-dependent protein kinase (CAMK) is physiologically activated in fertilized human oocytes and is involved in the Ca2+ response pathways that link the fertilization calmodulin signal to meiosis resumption and cortical granule exocytosis. The kinase has an unstructured C-terminal tail that can be recognized and bound by the PDZ5 domain of its cognate partner, the multi-PDZ domain protein (MUP). In the current study, we reported a rational biomolecular design of halogen-bonding system at the complex interface of CAMK’s C-terminal peptide with MUP PDZ5 domain by using high-level computational approaches. Four organic halogens were employed as atom probes to explore the structural geometry and energetic property of designed halogen bonds in the PDZ5–peptide complex. It was found that the heavier halogen elements such as bromine Br and iodine I can confer stronger halogen bond but would cause bad atomic contacts and overlaps at the complex interface, while fluorine F cannot form effective halogen bond in the complex. In addition, the halogen substitution at different positions of peptide’s aromatic ring would result in distinct effects on the halogen-bonding system. The computational findings were then verified by using fluorescence analysis; it is indicated that the halogen type and substitution position play critical role in the interaction strength of halogen bonds, and thus the PDZ5–peptide binding affinity can be improved considerably by optimizing their combination.  相似文献   

4.
5.
The Ad2 E3–19k protein inhibits the transport of newly synthesized class I MHC molecules to the cell surface, thereby interfering with antigen presentation. The details of the interaction between E3–19k protein and class I MHC molecules have not been well‐defined. In this present study, we describe the use of gel filtration HPLC for confirming the binding interaction of two domain proteins, E3–19k and MHC class I antigen, and subsequently the characterization of protein complex by SDS‐PAGE. Our results demonstrate the complex formation between Ad2 lumenal E3–19k (108 amino acids, wt 108) and HLA‐A*0201 molecule in vitro. Titration experiments will be employed in the future to determine stoichiometry and verify the specific interactions.  相似文献   

6.
The Wnt/β-catenin signaling pathway plays a significant role in the control of osteoblastogenesis and bone formation. CXXC finger protein 5 (CXXC5) has been recently identified as a negative feedback regulator of osteoblast differentiation through a specific interaction with Dishevelled (Dvl) protein. It was reported that targeting the Dvl–CXXC5 interaction could be a novel anabolic therapeutic target for osteoporosis. In this study, complex structure of Dvl PDZ domain and CXXC5 peptide was simulated with molecular dynamics (MD). Based on the structural analysis of binding modes of MD-simulated Dvl PDZ domain with CXXC5 peptide and crystal Dvl PDZ domain with synthetic peptide–ligands, we generated two different pharmacophore models and applied pharmacophore-based virtual screening to discover potent inhibitors of the Dvl–CXXC5 interaction for the anabolic therapy of osteoporosis. Analysis of 16 compounds selected by means of a virtual screening protocol yielded four compounds that effectively disrupted the Dvl–CXXC5 interaction in the fluorescence polarization assay. Potential compounds were validated by fluorescence spectroscopy and nuclear magnetic resonance. We successfully identified a highly potent inhibitor, BMD4722, which directly binds to the Dvl PDZ domain and disrupts the Dvl–CXXC5 interaction. Overall, CXXC5–Dvl PDZ domain complex based pharmacophore combined with various traditional and simple computational methods is a promising approach for the development of modulators targeting the Dvl–CXXC5 interaction, and the potent inhibitor BMD4722 could serve as a starting point to discover or design more potent and specific the Dvl–CXXC5 interaction disruptors.  相似文献   

7.
Protein–protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains. Characterizing the interaction interface of domain–peptide complexes and analyzing binding specificity for modular domains are critical for deciphering protein–protein interaction networks. In this article, we report the successful use of an integrated computational protocol to dissect the energetic profile and structural basis of peptide binding to third PDZ domain (PDZ3) from the PSD-95 protein. This protocol employs rigorous quantum mechanics/molecular mechanics (QM/MM), semi-empirical Poisson–Boltzmann/surface area (PB/SA), and empirical conformational free energy analysis (CFEA) to quantitatively describe and decompose systematic energy changes arising from, respectively, noncovalent interaction, desolvation effect, and conformational entropy loss associated with the formation of 30 affinity-known PDZ3–peptide complexes. We show that the QM/MM-, PB/SA-, and CFEA-derived energy components can work together fairly well in reproducing experimentally measured affinity after a linearly weighting treatment, albeit they are not compatible with each other directly. We also demonstrate that: (1) noncovalent interaction and desolvation effect donate, respectively, stability and specificity to complex architecture, while entropy loss contributes modestly to binding; (2) P0 and P−2 of peptide ligand are the most important positions for determining both the stability and specificity of the PDZ3–peptide complex, P−1 and P−3 can confer substantial stability (but not specificity) for the complex, and N-terminal P−4 and P−5 have only a very limited effect on binding.  相似文献   

8.
PDZ (PSD-95/Discs-large/ZO-1 homology) domains represent putative targets in several diseases including cancer, stroke, addiction and neuropathic pain. Here we describe the application of a simple and fast screening assay based on fluorescence polarization (FP) to identify inhibitors of the PDZ domain in PICK1 (protein interacting with C kinase 1). We screened 43,380 compounds for their ability to inhibit binding of an Oregon Green labeled C-terminal dopamine transporter peptide (OrG-DAT C13) to purified PICK1 in solution. The assay was highly reliable with excellent screening assay parameters (Z'≈0.7 and Z≈0.6). Out of ~200 compounds that reduced FP to less than 80% of the control wells, six compounds were further characterized. The apparent affinities of the compounds were determined in FP competition binding experiments and ranged from ~5.0 μM to ~193 μM. Binding to the PICK1 PDZ domain was confirmed for five of the compounds (CSC-03, CSC-04, CSC-43, FSC-231 and FSC-240) in a non-fluorescence based assay by their ability to inhibit pull-down of PICK1 by a C-terminal DAT GST fusion protein. CSC-03 displayed the highest apparent affinity (5.0 μM) in the FP assay, and was according to fluorescence resonance energy transfer (FRET) experiments capable of inhibiting the interaction between the C-terminus of the GluR2 subunit of the AMPA-type glutamate receptor and PICK1 in live cells. Additional experiments suggested that CSC-03 most likely is an irreversible inhibitor but with specificity for PICK1 since it did not bind three different PDZ domains of PSD-95. Summarized, our data suggest that FP based screening assays might be a widely applicable tool in the search for small molecule inhibitors of PDZ domain interactions.  相似文献   

9.
In this report, we describe the preparation of novel nitrilotriacetic acid/Co2+-linked, silica/boron-coated magnetite nanoparticles for purification of 6 x His-tagged proteins. The nanoparticles were approximately 200 nm in size and were stable against hydrochloric acid and had negligible non-specific binding for protein. Elimination of non-specific binding by nucleic acids was readily achieved by digestion of samples with DNase and RNase. The modified nanoparticles were used to purify two model proteins: one had a C-terminal 6 x His tag, and the other had an internal 6 x His tag. Both proteins were purified within one hour into single band purity on sodium dodecyl sulfate-polyacrylamide electrophoresis gel.  相似文献   

10.
The design of proteins whose structure and function can be manipulated by binding with specific ligands has been of great interest in the field of protein engineering. Some successful examples of small-molecule-dependent proteins have been reported, but their ligand-binding domains have mainly been limited to those derived from natural proteins. The introduction of synthetic components for ligand responsiveness may expand the versatility of small-molecule-dependent proteins. In this study, we designed and constructed a fragmented green fluorescent protein (split GFP) whose reassembly could be modulated by the non-natural supramolecular interaction. In the design of split GFP, beta-cyclodextrin (betaCDx) and coumarin units were introduced into a C-terminal fragment (residues 214-230) of split GFP. The C-terminal peptide with betaCDx and coumarin, DC-M2-betaCDx, which contains both host and guest moieties in the same peptide chain, formed an intramolecular inclusion complex in the absence of exogenous guest molecules. This interaction strongly inhibited reconstitution with the GFP N-terminal fragment (residues 2-214) (GFP 1-10 OPT). However, the addition of suitable guest molecules for betaCDx terminated the intramolecular host-guest interaction in the C-terminal peptide, leading to reassembly of the protein fragments and concomitant fluorescence recovery due to the formation of mature GFP. These results successfully demonstrated direct control of protein structure and function by application of synthetic supramolecular interaction to a fragmented protein. The combined system of fragmented protein and synthetic supramolecular elements is expected to be a useful and flexible strategy for regulation of protein structure and function via binding to synthetic ligands.  相似文献   

11.
C-Terminal carboxyl methylation of a human placental 23 kDa protein catalyzed by membrane-associated methyltransferase has been investigated. The 23 kDa protein substrate methylated was partially purified by DEAE-Sephacel, hydroxyapatite and Sephadex G-100 gel filtration chromatographies. The substrate protein was eluted on Sephadex G-100 gel filtration chromatography as a protein of about 29 kDa. In the absence of Mg2+, the methylation was stimulated by guanine nucleotides (GTP, GDP and GTPgammaS), but in the presence of Mg2+, only GTPgammaS stimulated the methylation which was similar to the effect on the G25K/rhoGDI complex. AFC, an inhibitor of C-terminal carboxyl methylation, inhibited the methylation of human placental 23 kDa protein. These results suggests that the substrate is a small G protein different from the G25K and is methylated on C-terminal isoprenylated cysteine residue. This was also confirmed by vapor phase analysis. The methylated substrate protein was redistributed to membrane after in vitro methylation, suggesting that the methylation of this protein is important for the redistribution of the 23 kDa small G protein for its putative role in intracellular signaling.  相似文献   

12.
Plasma samples from adult male rats were separated by nondenaturing micro 2DE and a reference gel was selected, on which 136 CBB‐stained spots were numbered and subjected to in‐gel digestion and quantitative LC‐MS/MS. The analysis provided the assignment of 1–25 (average eight) non‐redundant proteins in each spot and totally 199 proteins were assigned in the 136 spots. About 40% of the proteins were detected in more than one spot and 15% in more than ten spots. We speculate this complexity arose from multiple causes, including protein heterogeneity, overlapping of protein locations and formation of protein complexes. Consequently, such results could not be appropriately presented as a conventional 2DE map, i.e. a list or a gel pattern with one or a few proteins annotated to each spot. Therefore, the LC‐MS/MS quantity data was used to reconstruct the gel distribution of each protein and a library containing 199 native protein maps was established for rat plasma. Since proteins that formed a complex would migrate together during the nondenaturing 2DE and thus show similar gel distributions, correlation analysis was attempted for similarity comparison between the maps. The protein pairs showing high correlation coefficients included some well‐known complexes, suggesting the promising application of native protein mapping for interaction analysis. With the importance of rat as the most commonly used laboratory animal in biomedical research, we expect this work would facilitate relevant studies by providing not only a reference library of rat plasma protein maps but a means for functional and interaction analysis.  相似文献   

13.
The formation of irreversible complexes between carrier ampholyte components and proteins was investigated by gel filtration of mixtures of proteins and radioactively labelled ampholytes. Experiments were performed both with purified proteins (albumin, ferritin, beta-glucuronidase) and with a complex mixture of proteins (serum); in no case was binding of ampholytes to proteins detected. Thus the results argue against the occurrence in isoelectric focusing of proteins of artifacts due to such complex formation.  相似文献   

14.
The filamentous fungus Sclerotinia sclerotiorum, grown on a xylose medium, was found to excrete one beta-glucosidase (beta-glu x). The enzyme was purified to apparent homogeneity by ammonium sulfate precipitation, gel filtration, anion-exchange chromatography, and high-performance liquid chromatography (HPLC) gel filtration chromatography. Its molecular mass was estimated to be 130 kDa by HPLC gel filtration and 60 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis, suggesting that beta-glu x may be a homodimer. For p-nitrophenyl beta-d-glucopyranoside hydrolysis, apparent Km and Vmax values were found to be 0.09 mM and 193 U/mg, respectively, while optimum temperature and pH were 55-60 degrees C and pH 5.0, respectively. beta-Glu x was strongly inhibited by Fe2+ and activated about 35% by Ca2+. beta-Glu x possesses strong transglucosylation activity in comparison with commercially available beta-glucosidases. The production rate of total glucooligosaccharides (GOSs) from 30% cellobiose at 50 degrees C and pH 5.0 for 6 h with 0.6 U/mL of enzyme preparation was 80 g/L. It reached 105 g/L under the same conditions when using cellobiose at 350 g/L (1.023 M). Finally, GOS structure was determined by mass spectrometry and 3C nuclear magnetic resonance spectroscopy.  相似文献   

15.
SPOT synthesis permits parallel synthesis and screening of thousands of cellulose membrane-bound peptides to study protein-protein interactions in a proteomic context. Recognition of C-terminal residues is one of the most common binding features of PDZ domains. Unfortunately, most solid support-bound peptide libraries lack a free C terminus due to C-terminal fixation on the solid support. To overcome this restriction, we developed a robust methodology based on our previous strategy for generating peptides with authentic C termini. To validate this improved method, we screened a human peptide library of 6223 C termini with the syntrophin PDZ domain. Furthermore, using the same library, new peptide ligands derived from membrane proteins and receptors were found for the ERBIN PDZ domain. Finally, we identified the protein kinase breakpoint cluster region, which is known as a negative regulator of cell proliferation and oncogenic transformation, as an ERBIN ligand.  相似文献   

16.
We examine here the role of the red, green, and blue human opsin structures in modulating the absorption properties of 11-cis-retinal bonded to the protein via a protonated Schiff base (PSB). We built the three-dimensional structures of the human red, green, and blue opsins using homology modeling techniques with the crystal structure of bovine rhodopsin as the template. We then used quantum mechanics (QM) combined with molecular mechanics (MM) (denoted as QM/MM) techniques in conjunction with molecular dynamics to determine how the room temperature molecular structures of the three human color opsin proteins modulate the absorption frequency of the same bound 11-cis-retinal chromophore to account for the differences in the observed absorption spectra. We find that the conformational twisting of the 11-cis-retinal PSB plays an important role in the green to blue opsin shift, whereas the dipolar side chains in the binding pocket play a surprising role of red-shifting the blue opsin with respect to the green opsin, as a fine adjustment to the opsin shift. The dipolar side chains play a large role in the opsin shift from red to green.  相似文献   

17.
大肠杆菌在细胞分裂时,FtsZ(Filamentous temperature-sensitive protein Z)蛋白会在细胞中部潜在位点聚合形成Z环,而MinC蛋白会抑制Z环形成,从而控制细胞分裂。本研究将min C与fts Z目的基因克隆到合适的载体中,并导入到大肠杆菌中进行表达,采用亲和层析和分子筛纯化的方法得到MinC/FtsZ复合物蛋白进行晶体筛选。通过FtsZ、MinC分别单独转化、表达纯化后混合和FtsZ、MinC共转化法两种方法得到FtsZ/MinC蛋白复合物,并分别对其进行晶体筛选。实验结果表明,在适宜的表达条件下,利用分别转化、纯化再混合的方法得到的FtsZ和MinC蛋白复合比例约为1∶1;混合时加入GTP和Mg Cl2可以促进复合物聚集态更单一,通过晶体筛选初步得到形状为针状的FtsZ/MinC复合蛋白晶体,为MinC/FtsZ复合物的结构解析提供实验基础。  相似文献   

18.
One of the basic and unresolved puzzles in the chemistry of vision concerns the natural selection of 11-cis-retinal as the light-sensing chromophore in visual pigments. A detailed computational examination of the structure, stability, energetics, and spectroscopy of 7-cis-, 9-cis-, 11-cis-, and 13-cis-retinal isomers in vertebrate (bovine, monkey) and invertebrate (squid) visual pigments was carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. The results show that the electrostatic interaction between retinal and opsin dominates the natural selection of 11-cis-retinal over other cis isomers in the dark state. In all of the pigments, 9-cis-retinal was found to be only slightly higher in energy than 11-cis-retinal, which provides strong evidence for the presence of 9-cis-rhodopsin in nature. 7-cis-Retinal is suggested to be an "upside-down" version of the all-trans isomer because the structural rearrangements observed for 7-cis-rhodopsin from squid were found to be very similar to those for squid bathorhodopsin. The progressive red shift in the calculated absorption wavelength (λ(max)) (431, 456, 490, and 508 nm for the 7-cis-, 9-cis-, 11-cis-, and 13-cis-retinal isomers) is due to the decrease in bond length alternation of the retinal.  相似文献   

19.
Solution NMR provides a powerful approach for detecting complex formation involving weak to moderate intermolecular affinity. However, solution NMR has only rarely been used to detect complex formation between two membrane proteins in model membranes. The impact of specific binding on the NMR spectrum of a membrane protein can be difficult to distinguish from spectral changes that are induced by nonspecific binding and/or by changes that arise from forced cohabitation of the two proteins in a single model membrane assembly. This is particularly the case when solubility limits make it impossible to complete a titration to the point of near saturation of complex formation. In this work experiments are presented that provide the basis for establishing whether specific complex formation occurs between two membrane proteins under conditions where binding is not of high avidity. Application of these methods led to the conclusion that the membrane protein CD147 (also known as EMMPRIN or basigin) forms a specific heterodimeric complex in the membrane with the 99-residue transmembrane C-terminal fragment of the amyloid precursor protein (C99 or APP-βCTF), the latter being the immediate precursor of the amyloid-β polypeptides that are closely linked to the etiology of Alzheimer's disease.  相似文献   

20.
In the present study, we investigated a new approach for studying the interaction between p53 and MDM2/X (where MDM is murine double minute protein). The method is based on the different mobility between the interacting domains of the oncosuppressor p53 and its protein ligands MDM2/X on polyacrylamide gels under native conditions. While the two proteins MDM2/X alone were able to enter the gel, the formation of a binary complex between p53 and MDM2/X prevented the gel entry. The novel technique is reliable for determining the different affinity elicited by MDM2 or MDMX toward p53, and can be useful for analyzing the dissociation power exerted by other molecules on the p53–MDM2/X complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号