首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The time dependent density functional theory (TDDFT) has been employed to calculate the X-ray absorption spectra of the alkaline-earth oxides at the metal K and L and oxygen K edges. Cluster models to mimic the bulk are considered, embedded within an array of point charges to simulate the Madelung potential. Comparison with experimental data allows a precise assessment of the performances of the method, which appears competitive and suitable to reproduce the measurements. The configuration mixing explicitly included in the TDDFT scheme appears mandatory for a correct reproduction of the oscillator strength distribution in the metal 2p spectra. The origin of the theoretical spectral features is investigated with the help of the partial density of the virtual states (PDOS) calculated for each core hole considered. The trends of the spectral features along the series are discussed in terms of the nature of the virtual final states and related to the presence of the empty nd orbitals of the metal cations. The trend of the below-edge features in the O1s excitation spectra is discussed in terms of the metal-oxygen bonding interaction.  相似文献   

2.
3.
Using a combination of X-ray photoemission and near-edge X-ray absorption spectroscopy (NEXAFS) as well as density-functional theory (DFT), we have investigated the adsorption of acetone on ice in the temperature range from 218 to 245 K. The adsorption enthalpy determined from experiment (45 kJ mol(-1)) agrees well with the adsorption energy predicted by theory (41 to 44 kJ mol(-1)). Oxygen K-edge NEXAFS spectra indicate that the presence of acetone at the ice surface does not induce the formation of a pre-melted layer at temperatures up to 243 K. DFT calculations show that the energetically most favored adsorption geometry for acetone on ice is with the molecular plane almost parallel to the surface.  相似文献   

4.
Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.  相似文献   

5.
Electronic structure of guanidine, diphenylguanidine, their protonated forms, and guanidinium chloride have been studied by X-ray photoelectron spectroscopy and quantum-chemical modeling. From the derived geometry parameters and electronic structure, the effect of protonation on localization of the electron density has been revealed. The lines in the valence region of the X-ray photoelectron spectra have been assigned.  相似文献   

6.
7.
For 3-5d transition-metal ions, the (C5R5)2MCl2 (R = H, Me for M = Ti, Zr, Hf) bent metallocenes represent a series of compounds that have been central in the development of organometallic chemistry and homogeneous catalysis. Here, we evaluate how changes in the principal quantum number for the group IV (C5H5)2MCl2 (M = Ti, Zr, Hf; 1- 3, respectively) complexes affects the covalency of M-Cl bonds through application of Cl K-edge X-ray Absorption Spectroscopy (XAS). Spectra were recorded on solid samples dispersed as a thin film and encapsulated in polystyrene matrices to reliably minimize problems associated with X-ray self-absorption. The data show that XAS pre-edge intensities can be quantitatively reproduced when analytes are encapsulated in polystyrene. Cl K-edge XAS data show that covalency in M-Cl bonding changes in the order Ti > Zr > Hf and demonstrates that covalency slightly decreases with increasing principal quantum number in 1-3. The percent Cl 3p character was experimentally determined to be 26, 23, and 18% per M-Cl bond in the thin-film samples for 1-3 respectively and was indistinguishable from the polystyrene samples, which analyzed as 25, 25, and 19% for 1-3, respectively. To aid in interpretation of Cl K-edge XAS, 1-3 were also analyzed by ground-state and time-dependent density functional theory (TD-DFT) calculations. The calculated spectra and percent chlorine character are in close agreement with the experimental observations, and show 20, 18, and 17% Cl 3p character per M-Cl bond for 1-3, respectively. Polystyrene matrix encapsulation affords a convenient method to safely contain radioactive samples to extend our studies to include actinide elements, where both 5f and 6d orbitals are expected to play a role in M-Cl bonding and where transition assignments must rely on accurate theoretical calculations.  相似文献   

8.
The salt 1,1,3,3-tetramethylguanidinium bromide, [((CH(3))(2)N)(2)C═NH(2)](+)Br(-) or [tmgH]Br, was found to melt at 135(5) °C, forming what may be referred to as a moderate temperature ionic liquid. The chemistry was studied and compared with the corresponding chloride compound. We present X-ray diffraction and Raman evidence to show that also the bromide salt contains dimeric ion pair "molecules" in the crystalline state and probably also in the liquid state. The structure of [tmgH]Br determined at 120(2) K was found to be monoclinic, space group P2(1)/n, with a = 7.2072(14), b = 13.335(3), c = 9.378(2) ?, β =104.31(3)°, Z = 2, based on 11769 reflections, measured from θ = 2.71-28.00° on a small colorless needle crystal. Raman and IR spectra are presented and assigned. When heated, both the chloride and the bromide salts form vapor phases. The Raman spectra of the vapors are surprisingly alike, showing, for example, a characteristic strong band at 2229 cm(-1). This band was interpreted by some of us to show that the [tmgH]Cl gas phase should consist of monomeric ion pair "molecules" held together by a single N-H(+)···Cl(-) hydrogen bond, the stretching vibration of which should be causing the band, based on ab initio molecular orbital density functional theory type calculations. It is not likely that both the bromide and chloride should have identical spectra. As explanation, the formation of 1,1-dimethylcyanamide gas is proposed, by decomposition of [tmgH]X leaving dimethylammonium halogenide (X = Cl, Br). The Raman spectra of all gas phases were quite identical and fitted the calculated spectrum of dimethylcyanamide. It is concluded that monomeric ion pair "molecules" held together by single N-H(+)···X(-) hydrogen bonds probably do not exist in the vapor phase over the solids at about 200-230 °C.  相似文献   

9.
Study of electron transfer in ferrocene-labeled collagen-like peptides   总被引:1,自引:0,他引:1  
This study describes the electron transfer (ET) phenomenon through a series of (Pro-Hyp-Gly) repeat units containing collagen mimics. The peptides contain redox-active ferrocene (Fc) and thiol-functionalized cystein (Cys) at the N- and C-terminals, respectively. Peptide films were prepared on gold surfaces and characterized by X-ray photoelectron spectroscopy (XPS), ellipsometry, and Fourier transform-reflection absorption infrared spectroscopy (FT-RAIRS). Electrochemical investigations of the films showed a linear but weakly distance-dependent ET. The importance of H-bonding was realized, and the possibility of a conformationally gated ET mechanism has been discussed.  相似文献   

10.
The simulation of X-ray emission spectra of organic molecules using time-dependent density functional theory (TDDFT) is explored. TDDFT calculations using standard hybrid exchange-correlation functionals in conjunction with large basis sets can predict accurate X-ray emission spectra provided an energy shift is applied to align the spectra with experiment. The relaxation of the orbitals in the intermediate state is an important factor, and neglect of this relaxation leads to considerably poorer predicted spectra. A short-range corrected functional is found to give emission energies that required a relatively small energy shift to align with experiment. However, increasing the amount of Hartree–Fock exchange in this functional to remove the need for any energy shift led to a deterioration in the quality of the calculated spectral profile. To predict accurate spectra without reference to experimental measurements, we use the CAM-B3LYP functional with the energy scale determined with reference to a Δself-consistent field calculation for the highest energy emission transition.  相似文献   

11.
Porphyrin and pincer complexes are both important categories of compounds in biological and catalytic systems. The idea to combine them is computationally investigated in this work. By employment of density functional theory (DFT), conceptual DFT, and time-dependent DFT approaches, structure, spectroscopy, and reactivity properties of porphyrin pincers are systematically studied for a selection of divalent metal ions. We found that the porphyrin pincers are structurally and spectroscopically different from their precursors and are more reactive in electrophilic and nucleophilic reactions. A few quantitative linear/exponential relationships have been discovered between bonding interactions, charge distributions, and DFT chemical reactivity indices. These results are implicative in chemical modification of hemoproteins and understanding chemical reactivity in heme-containing and other biologically important complexes and cofactors.  相似文献   

12.
Iron K-edge X-ray absorption pre-edge features have been calculated using a time-dependent density functional approach. The influence of functional, solvation, and relativistic effects on the calculated energies and intensities has been examined by correlation of the calculated parameters to experimental data on a series of 10 iron model complexes, which span a range of high-spin and low-spin ferrous and ferric complexes in O(h) to T(d) geometries. Both quadrupole and dipole contributions to the spectra have been calculated. We find that good agreement between theory and experiment is obtained by using the BP86 functional with the CP(PPP) basis set on the Fe and TZVP one of the remaining atoms. Inclusion of solvation yields a small improvement in the calculated energies. However, the inclusion of scalar relativistic effects did not yield any improved correlation with experiment. The use of these methods to uniquely assign individual spectral transitions and to examine experimental contributions to backbonding is discussed.  相似文献   

13.
Carburized molybdenum catalysts supported on a dealuminated NaH-Y zeolite were prepared by carburization under a 20% methane in hydrogen flow of two precursors obtained by adsorption of molybdenum hexacarbonyl, one containing 5 wt % and the other 10 wt % Mo, and a third one was prepared by impregnation with aqueous ammonium heptamolybdate, containing 5 wt % Mo. The three catalysts displayed very distinct behaviors in the benzene hydrogenation reaction at atmospheric pressure and 363 K. By using XANES spectroscopy at the molybdenum L edge, EXAFS and XANES spectroscopy at the molybdenum K edge, and 27Al solid-state NMR spectroscopy, it was shown that different carburized molybdenum species exist in each sample. In the catalyst containing 10 wt % Mo, formation of molybdenum carbide nanoparticles was observed, with an estimated diameter of 1.8 nm. In the catalyst containing 5 wt % Mo and prepared by carburization of adsorbed molybdenum hexacarbonyl, formation of molybdenum oxycarbide dimers is proposed. In the latter case, density functional theory calculations have led to a dimer structure which is compatible with EXAFS results. In the catalyst prepared by impregnation with ammonium heptamolybdate solution followed by carburization, the molybdenum seems to interact with extraframework alumina to produce highly disordered mixed molybdenum-aluminum oxycarbides.  相似文献   

14.
The results of calculations employing twelve different combinations of exchange and correlation functionals are compared with results of ab initio calculations for two different configurations of the water dimer and three different configurations of the thymine-adenine complex. None of the density functional theory (DFT) treatments could properly reproduce the results of coupled-cluster calculations for all configurations examined. The DFT approaches perform well when the interaction energy is dominated by the electrostatic component and the dispersion energy is less important. Two mechanisms that compensate for the missing dispersion component were identified. The first one is the decrease of the magnitude of the intermolecular exchange-repulsion and the second one is the increase of the magnitude of the attractive deformation energy. For some functionals both effects are observed together, but for some other ones only the second effect occurs. The three correlation functionals that were examined were found to make only very small contributions to the deformation energy. The examination of angular and distance dependence of the interactions shows that the currently available DFT approaches are not suitable for developing intermolecular potential energy surfaces. They could however be used to find global minima on potential energy surfaces governed by intermolecular electrostatic interactions. Additional single point ab initio calculations are recommended as the means of validating optimized structures.  相似文献   

15.
The FTIR and FT Raman spectra of p-anisaldehyde has been recorded in the regions 4,000-400 and 3,500-100 cm(-1), respectively. The optimized geometry, frequency and intensity of the vibrational bands of p-anisaldehyde were obtained by ab initio and DFT levels of theory with complete relaxation in the potential energy surface using 6-31G(d,p) basis set. A complete vibrational assignment aided by the theoretical harmonic frequency analysis has been proposed. The harmonic vibrational frequencies calculated have been compared with experimental FTIR and FT Raman spectra. The observed and the calculated frequencies are found to be in good agreement. The experimental spectra also coincide satisfactorily with those of theoretically constructed bar type spectrograms.  相似文献   

16.
The molecular geometry and vibrational frequencies of 4,4'-bipyridine (BPE) in the ground state were calculated using density functional theory (DFT) methods (B3LYP) with 6-31++G(d,p) basis set. The optimized geometric bond lengths and bond angles are obtained by DFT employing the hybrid of Beckes non-local three parameter exchange and correlation functional and Lee-Yang-Parr correlation functional. Fourier transform infrared (FT-IR), Fourier transform Raman (FT-Raman) and near-infrared surface-enhanced Raman scattering (NIR-SERS) spectra of BPE on the silver foil substrate have been recorded. All FT-IR, FT-Raman and NIR-SERS band were assigned on the basis of the B3LYP/6-31++G(d,p) method. The vibrational frequencies obtained by DFT(3LYP) are in good agreement with observed results. The NIR-SERS of BPE excited by 1064nm laser line is little difference with that excited by visible laser line. This phenomenon is result to the increase of the contribution of CHEM enhancement effect. Surface selection rules derived from the electromagnetic enhancement model were employed to infer the orientations of BPE on the silver foil substrate surface. Some vibrational frequency which are sensitive to the planar or non-planar structure of BPE, and to the dihedral angle were concluded.  相似文献   

17.
The sulfur K and metal LIII absorption spectra of transition-metal trichalcogenides (TMTC's) were measured. The matrix element effect plays an important role in these spectra. It was considered that the structures up to 5 eV above the absorption edge reflect the chalcogen antibonding band, the metal nonbonding dz2 band, and the metal d bands, and that the higher energy structures are derived from the metal s and p bands. The chalcogen antibonding band arises from chalcogen pairing and the metal d, s, and p bands are the mixture bands with chalcogen p orbitals. Evidence that shows that the lowest conduction band of the group IV TMTC's is the chalcogen antibonding band is presented. The overlap of the metal d and metal s bands is promoted by increasing the atomic number of chalcogen atoms.  相似文献   

18.
The metal sites of selenate reductase from Thauera selenatis have been characterized by Mo, Se, and Fe K-edge X-ray absorption spectroscopy. The Mo site of the oxidized enzyme has 3 to 4 sulfur ligands at 2.33 A from two molybdopterin cofactors, one Mo=O group at 1.68 A and one Mo-O with an intermediate bond length of 1.81 A. The reduced enzyme has a des-oxo active site, again with about four Mo-S ligands (at 2.32 A) and possibly one oxygen ligand at 2.22 A. The enzyme was found to contain Se in a reduced form (probably organic) although the sequence does not indicate the presence of selenocysteine. The Se is coordinated to both a metal (probably Fe) and a lighter scatterer such as carbon.  相似文献   

19.
We present a combined x-ray absorption spectroscopy/computational study of water in hydrochloric acid (HCl) solutions of varying concentration to address the structure and bonding of excess protons and their effect on the hydrogen bonding network in liquid water. Intensity variations and energy shifts indicate changes in the hydrogen bonding structure in water as well as the local structure of the protonated complex as a function of the concentration of protons. In particular, in highly acidic solutions we find a dominance of the Eigen form, H(3)O(+), while the proton is less localized to a specific water under less acidic conditions.  相似文献   

20.
In this paper, X-ray absorption near edge spectroscopy at the nitrogen K edge (N K XANES) data of polyaniline (PANI) and its derivatives were revisited and expanded. The N K XANES spectra of PANI nanocomposites and PANI nanofibers were also investigated. The analysis of N K XANES spectra were done by the deconvolution of bands and the 1s → π* and 1s → σ* transitions were assigned by a correlation with the N K XANES spectra of smaller organic compounds. The “free” forms of PANI were dominated by bands from 397.7 eV to 399.1 eV attributed to imine and radical cation nitrogen atoms, respectively. Nitrogen bonded to phenazine-like rings can also be seen, mainly for PANI prepared at pH higher than 3.0. The spectra of nanocomposites show sharper bands than the “free” polymers as well as new bands at 398.8 eV and 405–406 eV. These new bands were assigned to phenazine-like rings and azo bonds in the structure of the polymers (polyaniline, polybenzidine, and poly(p-phenylediamine)) within the galleries of the montmorillonite clay. PANI nanofibers doped with HCl or HClO4 show bands related to phenazine-like rings and/or dication segments of PANI, indicating that these segments are important in the formation of PANI nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号