首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effect of the carrier frequency of the exciting laser pulse on the kinetics of intramolecular photoinduced charge transfer in the multi-channel stochastic model is studied. It is shown that the population of different states of high-frequency intramolecular modes upon varying the frequency of the excitation pulse can considerably alter the rate constant of ultrafast charge transfer. It is found that a negative vibrational spectral effect is expected in the vicinity of a barrier-free area (the rate constant of photoinduced charge transfer decreases along with the carrier frequency of the excitation pulse), while a positive effect is predicted in areas of high and low exergonicity (an inverse dependence). It is concluded that the value of the spectral effect falls along with the time of vibrational relaxation. For ultrafast photo-induced charge transfer, however, it remains considerable up to relaxation times of 100 fs.  相似文献   

3.
4.
5.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

6.
7.
A donor acceptor substituted aromatic system 5-(4-dimethylamino-phenyl)-penta-2,4-dienoic acid (DMAPPDA) has been synthesized and its spectral properties have been explored on the basis of steady state absorption and fluorescence spectroscopy. Spectral features point largely towards a possible occurrence of photoinduced intramolecular charge transfer process from the donor NMe2 group to the acceptor acid group. Solvent dependency of the large Stokes' shifted emission band and the calculated large excited state dipole moment support the polar character of the charge transfer excited state. Quantum yield calculations and effect of addition of acid and base on the steady state spectra were also performed to further scrutinize the excited state CT character.  相似文献   

8.
The dependence of the photoinduced charge transfer rate constant on the pump pulse carrier frequency is shown to be strong, and it is considerably affected by the value of the reorganization energy of low‐frequency modes at the stage of excitation. In the area of small values of the reorganization energy, the dependence of the charge transfer rate constant on the pump pulse carrier frequency is strongly nonmonotonic that is caused by vibrational resonances and variation of the initial position of the wave packet on the term of the locally excited state. Increasing the reorganization energy smoothes the dependence. The smoothing is caused by the broadening of the vibrational resonances and their overlapping. The high‐frequency vibrational mode excitation typically accelerates the charge transfer in both areas of high and low exergonicity and decelerates it in the vicinity of the Marcus barrierless region.  相似文献   

9.
Intramolecular charge separation from the second singlet excited state of directly linked Zn-porphyrin-imide dyads and following charge recombination into the first singlet excited state has been investigated in the framework of a model involving three electronic states (the first and the second singlet excited and charge separated states) as well as their vibrational sublevels. Kinetics of the transitions between these states are described in terms of the stochastic point-transition approach. The influence of the model parameters (free energy change of charge separation, magnitude of the reorganization energies of the medium and the high frequency intramolecular vibrations, the rate of relaxation of the medium and the intramolecular high frequency vibrational mode) on the kinetics of population of both the charge separated and the first singlet excited states has been explored. Simulations of the kinetics of the charge separated state population have allowed reproducing the distinctive features of the kinetics observed in the experiment [Wallin, S.; Monnereau, C.; Blart, E.; Gankou, J.-R.; Odobel, F.; Hammarstr?m, L. J. Phys. Chem. A 2010, 114, 1709]: (i) two maxima on short time scale (hundreds of femtoseconds) and long time scale (tens of picoseconds), (ii) the magnitudes of both maxima, and (iii) the depth of the notch between the maxima.  相似文献   

10.
Quantum calculations of the INDO-S/CI type are performed on a porphyrin—quinone cyclophane complex to determine the molecular parameters which govern the photoinduced charge separation, such as energy locations of the excited state and the lowest charge transfer states as well as the electron transfer couplings. From the molecular dynamics studies, the structural arrangement of the quinone relative to the porphyrin and the reorganization energies of the solvents are extracted. The results are cast in analytic form, which shows explicitly the polarity dependence of the solvent-induced intramolecular electron transfer process. The theory is used to interpret experimental results in a companion paper.  相似文献   

11.
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ~57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.  相似文献   

12.
13.
A model of nonequilibrium charge recombination from an excited adiabatic state of a donor-acceptor complex induced by the nonadiabatic interaction operator is considered. The decay of the excited state population prepared by a short laser pulse is shown to be highly nonexponential. The influence of the excitation pulse carrier frequency on the ultrafast charge recombination dynamics of excited donor-acceptor complexes is explored. The charge recombination rate constant is found to decrease with increasing excitation frequency. The variation of the excitation pulse carrier frequency within the charge transfer absorption band of the complex can alter the effective charge recombination rate by up to a factor 2. The magnitude of this spectral effect decreases strongly with increasing electronic coupling.  相似文献   

14.
The dependence of the ultrafast photoinduced electron transfer dynamics in donor-acceptor complexes on the excitation pulse carrier frequency (spectral effect) has been investigated in the framework of a model involving three electronic state. The spectral effect has been shown to strongly depend on the angle theta between the reaction coordinate directions corresponding to optical and charge transfer transitions. Describing the solvent as a linear homogenous polar medium and accounting for Coulombic interaction of the transferred charge with the medium polarization fluctuations, the angle theta has been found out to be typically in the area 40 degrees -85 degrees. Exactly in this area of theta the spectral effect is predicted to be most pronounced.  相似文献   

15.
The processes of intramolecular electron transfer from the second excited electron state accompanied by superfast reverse transfer to the first excited state are studied. The kinetics of the populations of the first and second excited states, along with that the charge-separated states, is calculated within the generalized stochastic model, taking into account the reorganization of the medium and intramolecular high-frequency vibrations. It is shown that variations in the relaxation rate of the high-frequency vibrational modes can change the population of the quenching products by a factor of two to three. It is established that in the case of the weak exothermicity of the charge separation process, the population of the charge-separated states declines upon an increase in the vibrational relaxation rate, while the population of the first excited state increases; in the region of high exothermicity, these dependences change to ones that are opposite. To reveal the scales of these effects in real systems, the kinetics of the photo-induced processes in the zinc-porphyrin derivatives, including electron-acceptor imide groups covalently coupled with porphyrin rings, are calculated. It is shown that the results from calculating the kinetics of the population of the first and the second excited states agree well with the experimental data on the kinetics of the fluorescence of these states. The absolute values of the population of the charge-separated state and the first excited state are determined. The key role of the hot electron transitions that occur in parallel with the relaxation of the medium and intramolecular vibrations in the considered process is shown.  相似文献   

16.
An electron donor–acceptor dyad (quaterthiophene–anthraquinone) mediates ultrafast intramolecular photoinduced charge separation and consequent charge recombination when in polar or moderately polar solvents. Alternatively, non-polar media completely impedes the initial photoinduced electron transfer by causing enough destabilization of the charge-transfer state and shifting its energy above the energy of the lowest locally excited singlet state. Furthermore, femtosecond transient-absorption spectroscopy reveals that for the solvents mediating the initial photoinduced electron-transfer process, the charge recombination rates were slower than the rates of charge separation. This behavior of donor–acceptor systems is essential for solar-energy-conversion applications. For the donor–acceptor dyad described in this study, the electron-transfer driving force and reorganization energy place the charge-recombination processes in the Marcus inverted region.  相似文献   

17.
18.
Bistridentate metal complexes as photosensitizers are ideal building blocks in the construction of rod-like isomer-free assemblies for intramolecular photoinduced charge separation. Approaches to obtain long-lived luminescent metal-to-ligand charge transfer excited states in bistridentate RuII polypyridine complexes via the manipulation of metal-centered state energies are discussed. Following an introduction to general strategies to prolong the excited state lifetimes, more recent work is explored in detail where tridentate ligands with expanded 2,2′:6′,2″-terpyridine cores are utilized. The synthesis of these tridentate ligands and their corresponding RuII complexes is covered. Bistridentate RuII complexes with microsecond metal-to-ligand charge transfer excited state lifetimes are described, and are used in electron donor–photosensitizer–electron acceptor assemblies for efficient vectorial photoinduced charge separation.  相似文献   

19.
An analysis of theoretical modeling results of ultrafast kinetics of photoinduced intramolecular charge separation from the second excited singlet state in the dyad Zn-tetraphenylporphyrin-aminonaphthalenediimide (Zn-TPP-ANDI) in a solution of toluene is presented. The calculations are performed within the framework of the stochastic multi-channel model, which includes four electron states (the ground, first and second excited singlet states, the state with charge separation), as well as their vibration sublevels corresponding to the excitation of highfrequency intramolecular vibration modes. A bimodal kinetic curve of population of the state with charge separation observed in experiments is quantitatively reproduced. The absolute yield values of the state with charge separation are determined. The results of the modeling show that intramolecular modes make a significant contribution to the reorganization of low-frequency modes. Quantum chemical calculations were performed, determining the degrees of freedom related to the intramolecular slow motion of nuclei of high amplitude in the dyad Zn-TPPANDI on going from the ground state to the state with charge separation.  相似文献   

20.
The application of local control theory combined with nonadiabatic ab initio molecular dynamics to study the photoinduced intramolecular proton transfer reaction in 4‐hydroxyacridine was investigated. All calculations were performed within the framework of linear‐response time‐dependent density functional theory. The computed pulses revealed important information about the underlying excited‐state nuclear dynamics highlighting the involvement of collective vibrational modes that would normally be neglected in a study performed on model systems constrained to a subset of the full configuration space. This study emphasizes the strengths of local control theory for the design of pulses that can trigger chemical reactions associated with the population of a given molecular excited state. In addition, analysis of the generated pulses can help to shed new light on the photophysics and photochemistry of complex molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号