首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
吴倩  张诸宇  郭晓晨  施伟华 《物理学报》2018,67(18):184212-184212
提出了一种基于定向耦合效应和表面等离子共振效应的交叉敏感分离的磁场温度传感结构.在光子晶体光纤的一个特定空气孔中填充磁流体,利用磁流体的磁光效应和定向耦合效应形成磁场传感通道;在垂直方向的另一空气孔的内壁镀金纳米薄膜并填充甲苯液体,利用甲苯的温敏效应和表面等离子共振效应形成温度传感通道.对应输出谱出现两个损耗峰,测量损耗峰位置可以间接测出磁场强度和温度变化.通过理论计算()和结构优化,在90—270 Oe1 Oe=10~3/(4π) A/m范围内,磁场强度的灵敏度最高可达1.16 nm/Oe;在25—60?C范围内,温度的灵敏度可达-9.07 nm/?C.虽然填充的两种液体的折射率都受环境温度的影响,但通过建立灵敏度系数矩阵,可以消除磁场强度与温度的交叉敏感,实现磁场温度双参量的高灵敏度检测.  相似文献   

2.
基于磁流体包覆的无芯-单模-无芯光纤的磁场传感结构中,无芯光纤起激发单模光纤的包层模并实现芯模-包层模干涉的作用.实验测量了该传感结构在不同外界磁场强度和温度下的透射光谱,研究了其磁场传感性能及环境温度对传感性能的影响.结果表明,随外界磁场强度的增加,波长在1 462nm和1 477nm位置附近的干涉谷均发生红移,其相应的磁场传感灵敏度分别为67.28pm/Oe和49.82pm/Oe;波长在1 462nm位置附近的干涉谷随温度的增加发生蓝移,干涉谷随温度变化的灵敏度为37.8pm/℃,该传感结构制作简单、灵敏度高,有很好的应用前景.  相似文献   

3.
施伟华  尤承杰  吴静 《物理学报》2015,64(22):224221-224221
利用光子晶体光纤结构的灵活性和性能的优越性, 设计了一种基于D形光子晶体光纤的折射率和温度传感器. 在D形光子晶体光纤表面抛磨并镀上金纳米薄膜, 作为表面等离子体共振传感通道用来测量液体折射率; 在包层的一个空气孔中填充温敏液体甲苯, 作为定向耦合通道实现对温度的测量. 进一步的数值计算发现, 基于定向耦合效应的温度传感和基于表面等离子体共振的折射率传感相互独立, D形光子晶体光纤同时进行折射率和温度传感检测. 在各向异性的完美匹配层边界条件下利用全矢量有限元法对该传感器特性进行了数值研究, 发现D形光子晶体光纤的空气孔直径决定了定向耦合吸收峰的中心波长和温度传感的灵敏度, 金薄膜的厚度和D形结构的抛磨深度仅影响表面等离子体共振峰的相对强度. 结果表明: 该传感器在-10–80 ℃的温度范围内具有11.6 nm/℃的温度灵敏度, 在1.34–1.44折射率范围内折射率灵敏度最高可达26000 nm/RIU.  相似文献   

4.
基于表面等离子体共振和定向耦合的光子晶体光纤传感器   总被引:2,自引:0,他引:2  
设计了一种具有较大动态检测范围的新型光子晶体光纤折射率传感器。光子晶体光纤中一个空气孔镀上金纳米薄膜作为表面等离子体共振传感通道用来检测低于石英基底材料的液体折射率,一个空气孔填充待测液体作为定向耦合器通道用于检测高于石英基底材料的折射率。该传感器可以实现折射率为1.32~1.52范围内的检测,且具有较高的传感灵敏度。在各向异性的完美匹配层(PML)下利用全矢量有限元法(FEM)对该传感器特性进行了数值研究,结果表明:在1.32~1.44和1.46~1.52的折射率范围该折射率传感器灵敏度最高分别可达13500 nm/RIU和28700 nm/RIU,RIU为折射率单位。  相似文献   

5.
设计了一种基于双芯光纤耦合效应和游标效应的高灵敏度温度传感器,传感器是由2个相差一定长度的双芯光子晶体光纤和单模光纤级联构成。双芯光子晶体光纤通过级联实现游标效应,同时对纤芯中间的气孔填充乙醇实现温度传感。仿真结果表明,该温度传感器在35℃~45℃范围内的平均温度灵敏度可达-20.37 nm/℃。与单纯依靠双芯光子晶体光纤能量耦合效应的传感器相比,该传感器的温度检测灵敏度提高了10倍。  相似文献   

6.
《光学学报》2021,41(7):1-9
为了提高光纤横向压强传感器传感系数,降低温度对压强传感的影响,提出一种具有"三明治"结构的光子晶体光纤,并利用有限元法对其布里渊动态光栅传感特性进行数值模拟。研究了不同压强和温度条件下光子晶体光纤双折射频移的变化,分析了光子晶体光纤结构对其传感特性的影响,结果表明:设计的光子晶体光纤具有高传感精度,0~40℃下光子晶体光纤慢轴方向上双折射频移的压强传感系数约为692 MHz/MPa,光纤快轴方向上压强传感系数约为-404 MHz/MPa, 0~40 MPa下温度系数仅为0.18 MHz/℃;与利用普通保偏光子晶体光纤设计的传感系数为199 MHz/MPa的压强传感系统相比,灵敏度提高了493 MHz/MPa。设计的光子晶体光纤提高了横向压强传感器传感系数且不易受温度的影响,适用于高精度静水压强传感领域。  相似文献   

7.
为提高Sagnac型温度传感器的测温范围和灵敏度,提供了一种具有高双折射高温度灵敏度特性的光子晶体光纤设计方法。通过在光纤空气孔内填充温敏液体材料,使光纤具有良好的温敏特性。在COMSOL中建立该光子晶体光纤的电磁场模型并对光纤特性进行分析计算,利用有限元法分析结构参数对双折射和光纤双折射温度灵敏度的影响,并在所确定结构基础上研究了温敏液体的填充方式和填充液体类型对光纤温敏特性的影响。确定了最优的结构和液体填充方式,最优情况下该光纤的双折射温度灵敏度能够达到2.050 7×10-5/℃,在1 550 nm处可获得5.96×10-2的双折射。将2 mm光子晶体光纤应用于Sagnac型温度传感器中并进行传感性能仿真分析,利用多项式拟合的方法对结果数据进行拟合以分析传感器的温度灵敏度,提高拟合准确性、减小测量误差。结果表明在0~75℃范围内传感器平均灵敏度可达11.28 nm/℃,与现有典型Sagnac型温度传感器相比,本文Sagnac型温度传感器在尽量减小光纤长度的基础上获得了较高的温度灵敏度,并且测温范围更大、准确性更高。因此,该传感器在温度测...  相似文献   

8.
应用于液压传感的光子晶体光纤特性   总被引:1,自引:1,他引:0  
何忠蛟 《光子学报》2012,41(3):316-319
为实现结构紧凑、高灵敏度的光纤压力(液压)传感器,提出了一种应用于液压传感的边孔结构光子晶体光纤.基于全矢量有限元方法,研究了传统光子晶体光纤和边孔结构光子晶体光纤的有效折射、模式等特性以及在液压情况下的应力和应力特性.根据光弹效应给出了传统光子晶体光纤和边孔结构光子晶体光纤在液压情况下的折射率变化特性.模拟结果表明边孔结构光子晶体光纤可以获得更大的液压传感灵敏度,增大边孔半径可以提高液压传感灵敏度,因此结构优化的边孔结构光子晶体光纤可以实现高灵敏度的光纤压力(液压)压力传感器.  相似文献   

9.
刘天沐  江毅  崔洋 《光子学报》2020,49(4):115-122
提出了一种在高温环境下同时测量温度和气压的光子晶体光纤温度压力传感器.在普通单模光纤和光子晶体光纤之间熔接一段空心光纤构成干涉结构.空心光纤段构成非本征法布里-珀罗干涉仪,利用光子晶体光纤的微孔与外界相通,通过气体折射率变化来测量环境中的气压变化;光子晶体光纤段构成本征法布里-珀罗干涉仪,利用热膨胀效应和热光效应来测量环境中的温度.传感器的解调通过自制的白光干涉解调仪实现,实验通过测量腔长得到被测环境的温度和气压.在不同温度和气压环境下,对腔长分别为306μm和1535μm的温度压力光纤传感器进行连续测量.实验结果表明,传感器能够在28~800℃的温度下和0~10 MPa的气压下稳定工作,测量范围内温度灵敏度可达17.4 nm/℃,压力灵敏度随温度增加而降低,在28℃时可达1460.5 nm/MPa.  相似文献   

10.
何忠蛟 《光子学报》2014,41(3):316-319
为实现结构紧凑、高灵敏度的光纤压力(液压)传感器,提出了一种应用于液压传感的边孔结构光子晶体光纤.基于全矢量有限元方法,研究了传统光子晶体光纤和边孔结构光子晶体光纤的有效折射、模式等特性以及在液压情况下的应力和应力特性.根据光弹效应给出了传统光子晶体光纤和边孔结构光子晶体光纤在液压情况下的折射率变化特性.模拟结果表明边孔结构光子晶体光纤可以获得更大的液压传感灵敏度,增大边孔半径可以提高液压传感灵敏度,因此结构优化的边孔结构光子晶体光纤可以实现高灵敏度的光纤压力(液压)压力传感器.  相似文献   

11.
提出了一种基于表面等离子体共振(SPR)效应增强的光子晶体光纤折射率传感器。该传感器结构通过光纤熔接机拼接光子晶体光纤(PCF),在光子晶体光纤中间引入一个空气孔形成PCF-空气孔-PCF的光纤传感结构,随后使用磁控溅射镀膜工艺在其表面沉积一层薄金膜制备而成。实验探究了折射率及温度对传感器的响应。结果表明,在1.333~1.389的折射率范围内,所提出的传感器的平均折射率灵敏度为2 142.52 nm,且测量线性度为0.981,品质因子约13.10。实验结果表明该传感器对温度不敏感。相比于无空气孔的PCF传感结构,引入的空气孔增强了SPR效应,使得传感器拥有良好的共振峰深度。得益于上述优势,该类型传感器有望在生物医学、环境监测等领域得到应用。  相似文献   

12.
基于光子晶体光纤Lyot-Sagnac环的可调谐微波光子滤波器   总被引:1,自引:0,他引:1  
提出了一种光子晶体光纤Lyot-Sagnac环切割宽带光源的中心频率连续可调的微波光子滤波器.用温敏液体(Cat.19340)对两段光子晶体光纤(长度为11.94m和1.94m)中心的一个大孔进行填充后嵌入Lyot-Sagnac环,仿真分析了不同填充占空比对Lyot-Sagnac环梳状谱周期和滤波器通带中心频率调谐范围的影响,结果表明:占空比越大,Lyot-Sagnac环的梳状谱周期越小,滤波器通带中心频率的调谐范围越大.在占空比最大温度为20℃和80℃时,两段光子晶体光纤的有效长度为10m时,LyotSagnac环的梳状谱周期分别为0.36nm和0.26nm;当两段光子晶体光纤的有效长度为13.88m时,Lyot-Sagnac环的梳状谱周期分别是0.26nm和0.19nm.用该Lyot-Sagnac环对宽带光源进行切割,当温度在20℃到80℃之间变化时,通过调节环内的偏振控制器,多波长光源波长间隔可在0.19nm~0.36nm范围内连续可调,实现了滤波器通带中心频率在31.04GHz~58.81GHz范围内连续可调.  相似文献   

13.
提出了一种光子晶体光纤Sagnac环切割宽带光源的中心频率连续可调的微波光子滤波器.用温敏液体(Cat.19340)对光子晶体光纤(长度为5m)中心的一个大孔进行填充后嵌入Sagnac环.仿真分析了不同填充占空比对Sagnac环梳状谱周期和滤波器通带中心频率调谐范围的影响,测得占空比越大,Sagnac环的梳状谱周期越小,滤波器通带中心频率的调谐范围越大.在占空比最大的情况下,当温度为20℃和80℃时,Sagnac环的梳状谱周期分别为0.72nm和0.52nm,用该Sagnac环对宽带光源进行切割,当温度在20℃~80℃变化时,多波长光源波长间隔在0.72nm~0.52nm连续可调,实现了滤波器通带中心频率在15.5GHz~21.5GHz范围内连续可调.  相似文献   

14.
赵勇  蔡露  李雪刚  吕日清 《物理学报》2017,66(7):70601-070601
提出了一种基于空芯光纤模间干涉原理的环境温度和磁场双参数传感器,为了使光入射进空芯光纤壁中,将空芯光纤与单模光纤错位熔接,传感部分用毛细玻璃管封装,空芯光纤内外分别填充酒精和磁流体.除了光纤材料的热光效应和热膨胀效应外,环境温度变化会引起两种溶液折射率的变化,而磁场变化仅引起空芯光纤外的磁流体折射率变化.理论计算可知空芯光纤壁中可支持多个模式传输并相互干涉,各模式传输相位对内外溶液折射率变化灵敏程度不同.因此,干涉谱中两个含有不同模式成分的波谷,即波谷1和波谷2,它们的漂移可以作为指示信号,通过建立敏感矩阵可同时解调出周围环境温度与磁场的变化.实验中,在28—58℃范围内,温度传感灵敏度可达-468 pm/℃;在0—169 Oe范围内磁场传感灵敏度可达82 pm/Oe.该传感器具有高灵敏度与高机械强度,并且能够实现温度与磁场的同时测量,有效消除了温度波动对磁场测量信号的干扰.  相似文献   

15.
提出了一种基于光子晶体光纤Sagnac干涉仪的横向压力传感器。使用的光子晶体光纤为低双折射光纤,首先预先在Saganc环中的光子晶体光纤上施加初始压力,使Sagnac干涉仪产生正弦干涉光谱,然后再将被测物体放在光子晶体光纤上,由于被测物体重力的作用,Saganc干涉仪输出的光谱产生移动,实现横向压力传感测量。传感器具有高灵敏度0.529 nm/(N·mm)及超低的温度系数-0.4 pm/℃,其环境温度的影响可以忽略。  相似文献   

16.
针对大于500℃的高温环境,提出了一种可用于高温温度测量的高温光子晶体光纤(PCF)温度传感器。在光子晶体光纤末端熔接一段纯石英无芯光纤构成外腔式光纤法珀腔(EFPI)结构。纯石英无芯光纤在高温下的热膨胀和热光效应使得EFPI的光学腔长发生变化。结合光纤白光干涉测量技术,通过测量EFPI的腔长得到被测温度。在不同温度环境下,对腔长为175μm的EFPI光纤温度传感器进行连续测量。测量结果显示,设计的高温光纤温度传感器在27~1100℃范围内,腔长-温度三阶拟合精度达到99.95%,腔长-温度灵敏度为(0.851+0.0023T-0.000000957T2)nm/℃,其中在1100℃时,温度测量分辨率为0.225℃。  相似文献   

17.
超低温度系数的光子晶体光纤Sagnac压力传感器   总被引:1,自引:1,他引:0       下载免费PDF全文
 提出了一种基于光子晶体光纤Sagnac干涉仪的横向压力传感器。使用的光子晶体光纤为低双折射光纤,首先预先在Saganc环中的光子晶体光纤上施加初始压力,使Sagnac干涉仪产生正弦干涉光谱,然后再将被测物体放在光子晶体光纤上,由于被测物体重力的作用,Saganc干涉仪输出的光谱产生移动,实现横向压力传感测量。传感器具有高灵敏度0.529 nm/(N·mm)及超低的温度系数-0.4 pm/℃,其环境温度的影响可以忽略。  相似文献   

18.
娄淑琴  王鑫  尹国路  韩博琳 《物理学报》2013,62(19):194209-194209
基于所研制的侧漏型光子晶体光纤, 提出并研制出一种Sagnac干涉仪型高灵敏度宽线性测量范围的弯曲传感器. 实验研究结果表明, 当侧漏型光子晶体光纤中的线性缺陷与弯曲方向一致时, 采用群双折射和波谷波长偏移量测量弯曲曲率均可获得高的弯曲灵敏度, 但线性测量范围小, 且不能进行小弯曲曲率的测量. 当线性缺陷与弯曲方向垂直时, 以波谷波长偏移量进行弯曲曲率检测, 可获得10.798 nm/m-1高灵敏度的同时且可实现0–5.03 m-1的宽线性测量范围, 结合测量矩阵的引入可实现温度和弯曲曲率的同时测量, 进而剔除环境温度变化对弯曲曲率检测的干扰, 实现了高灵敏度宽线性范围的弯曲传感; 而以群双折射进行弯曲曲率检测, 虽然检测灵敏度较低, 但可实现对环境温度不敏感的弯曲传感. 关键词: 弯曲传感器 侧漏型光子晶体光纤 高灵敏度 宽线性范围  相似文献   

19.
为了在中红外区域实现气凝胶、七氟醚(麻醉剂重要成分)等物质的折射率检测,拓展折射率检测范围,提出了一种基于双芯光子晶体光纤的表面等离子体共振低折射率传感器.光子晶体光纤由两种大小不同的空气孔围绕中心气孔构成,通过对光纤抛磨,最外侧大空气孔直接与待测物质接触,实现基于金属外涂覆的折射率实时测量.采用全矢量有限元法对该传感器的理论模型进行分析,结果表明,在1.12~1.37折射率范围内,传感器的共振波长位于中红外区域2 505~3 181nm,最高灵敏度为12 000nm/RIU,分辨率为8.33×10-6.该传感器利用中红外波段实现了低折射率检测,并且获得了超宽的检测范围和较高的灵敏度,在化工检测、生物医学传感以及水环境监测等领域具有广泛的应用前景.  相似文献   

20.
光纤传感     
近年来,基于光纤的功能器件被广泛应用,光纤传感器相比于传统传感器具有成本低廉、体积小、质量轻、灵敏度高、耐恶劣环境、抗环境电磁干扰等诸多优势.回顾了光纤的发展历程和基本概念,分别从传统光纤和微结构光纤(光子晶体光纤)两大类别出发,介绍了应用于温度、湿度、应力、磁场等多参量多维度的传感系统.着重介绍了液晶注入型光子晶体光...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号