首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电子束蒸发氧化锆薄膜的粗糙度和光散射特性   总被引:9,自引:0,他引:9       下载免费PDF全文
利用电子束蒸发工艺,以Ag层为衬底,沉积了中心波长为632.8nm的氧化锆(ZrO2)薄膜,膜层厚度在80—480nm范围内变化.研究了不同厚度样品的粗糙度变化规律和表面散射特性.结果发现,随着膜层厚度的逐渐增加,其表面均方根(RMS)粗糙度和总积分散射(TIS)均呈现出先减小后增大的趋势.利用非相关表面粗糙度的散射模型对样品的TIS特性进行了理论计算,所得结果与测量结果相一致. 关键词: 氧化锆 表面粗糙度 标量散射 电子束蒸发  相似文献   

2.
Hf O_2薄膜厚度达到纳米级别时,其光学性质会发生变化。光谱椭偏仪能够同时得到纳米尺度薄膜的厚度和光学常数,但是由于测量参数的关联性,光学常数的结果不准确可靠。本文采用溯源至SI单位的掠入射X射线反射技术对纳米尺度Hf O_2薄膜厚度进行准确测量,再以该量值为准确薄膜厚度参考值。利用光谱椭偏仪测量Hf O_2膜厚和光学常数时,参考膜厚量值,从而得到对应相关膜厚的薄膜准确光学参数。研究了以Al2O_3作为薄膜缓冲层的名义值厚度分别为2,5,10 nm的超薄Hf O_2薄膜厚度对光学性质的影响。实验结果表明,随着Hf O_2薄膜厚度的增加,折射率也逐渐增大,在激光波长632.8 nm下其折射率分别为1.901,2.042,2.121,并且接近于体材料,而消光系数始终为0,表明纳米尺度Hf O_2薄膜在较宽的光谱范围内具有较好的增透作用,对光没有吸收。  相似文献   

3.
为了考察基底温度对氧化铝薄膜折射率以及沉积厚度的影响情况,在不同基底温度环境下,通过离子辅助电子束蒸发方式,在玻璃基底上制备了同一Tooling因子条件下所监测到相同厚度的Al2O3薄膜,利用分光光度计测量光谱透过率,依据光学薄膜相关理论,计算了基底温度在25℃~300℃范围内获得的膜层实际物理厚度为275.611 nm~348.447 nm,以及膜层折射率的变化。通过对实验结果的数值计算和曲线模拟,给出了基底温度对于薄膜的折射率和实际厚度的影响情况。  相似文献   

4.
周期性结构是光学薄膜设计的基本物理模型,给出了反射区中心波长的一般性条件,研究了在膜层材料存在折射率色散情况下,等厚周期结构和非等厚周期结构的薄膜反射区中心波长与带宽特性.研究结果表明:在等厚和非等厚周期结构中,考虑膜层材料折射率色散与忽略色散情况相比,中心波长向长波方向移动,反射级次与相对波数的线性关系偏离;在薄膜光学厚度一定的非等厚周期结构中,高折射率层光学厚度大于低折射率层时,反射级次与相对波数的线性关系偏离度高;非等厚周期结构薄膜的带宽在低反射级次上小于等厚周期结构,同时膜层的色散对反射带宽影响不大.  相似文献   

5.
利用离子束溅射沉积制备了光学薄膜。基于椭圆偏振测量技术,研究了折射率、膜层厚度和表面层厚度与测试光斑大小的关系。研究结果表明,随着样品表面测试光斑尺寸的增加,薄膜折射率变小,膜层厚度、表面层厚度增加。使用反射光谱法和轮廓仪分别验证了各光学常数的光斑效应。研究结果表明,光学薄膜的折射率与膜层厚度具有弱横向非均匀性,采用大尺寸测量光斑能弱化这种非均匀性。  相似文献   

6.
采用真空热阻蒸方式在CMOS图像传感器感光面上镀制不同厚度性比价高的Lumogen薄膜.研究发现不同Lumogen薄膜厚度的CMOS传感器的暗电流噪声未发生明显变化,说明真空热蒸发方式对互补金属氧化物半导体器件本身未造成热损伤;光响应非均匀度随膜厚增加而增大;动态范围却随膜厚增加而减小;量子效率随膜厚增加呈现先增大后减小.同时,研究发现敏化膜层最佳厚度为389nm,此时CMOS传感器的量子效率提高了10%,且光响应非均匀度,动态范围均在相对较好的范围内.  相似文献   

7.
潘永强  杨琛 《应用光学》2018,39(3):400-404
为了探究二氧化钛(TiO2)薄膜表面粗糙度的影响因素, 利用离子束辅助沉积电子束热蒸发技术对不同基底粗糙度以及相同基底粗糙度的K9玻璃完成二氧化钛(TiO2)光学薄膜的沉积。采用TalySurf CCI非接触式表面轮廓仪分别对镀制前基底表面粗糙度和镀制后薄膜表面粗糙度进行测量。实验表明, TiO2薄膜表面粗糙度随着基底表面的增大而增大, 但始终小于基底表面粗糙度, 说明TiO2薄膜具有平滑基地表面粗糙的作用; 随着沉积速率的增大, 薄膜表面粗糙度先降低后趋于平缓; 对于粗糙度为2 nm的基底, 离子束能量大小的改变影响不大, 薄膜表面粗糙度均在1.5 nm左右; 随着膜层厚度的增大, 薄膜表面粗糙度先下降后升高。  相似文献   

8.
采用双离子溅射的方法,在硅、石英基底上制备了单层Ta2O5、SiO2及双层Ta2O5/SiO2光学薄膜。结合Cauchy色散模型,利用石英基底上单层Ta2O5及双层Ta2O5/SiO2薄膜透射光谱曲线,采用改进的遗传单纯形混合算法,获得了Ta2O5和SiO2薄膜材料在400~700nm波段的光学常数。结果表明,理论分析值与实验测量值取得了很好的一致性,拟合出的单层Ta2O5薄膜折射率误差小于0.001,膜层厚度误差不超过1nm;双层Ta2O5/SiO2薄膜最大折射率误差小于0.004,最大厚度误差小于2.5nm。此外,还对400℃高温环境下双层Ta2O5/SiO2薄膜的微观结构、应力、表面形貌及光学性能变化进行了研究。  相似文献   

9.
薄膜材料的生长过程随镀膜机尺寸的增大而呈现新的规律,为制备膜层均匀性好、材料均质的大尺寸光学元件,分别在不同离子源能量、沉积压强、基板加热温度及基板转速条件下,采用离子辅助电子束蒸发方法制备了不同单层SiO2薄膜样品;利用分光光度计及椭偏仪分别对样品的透过率及椭偏参数进行测量,并对测量结果进行拟合得到不同样品的折射率及非均质特性。实验结果表明,工件架转速是使大尺寸SiO2薄膜材料产生非均质特性的主要影响因素,离子源能量、基板温度、沉积压强通过影响材料生长过程对材料的非均质特性产生调控;对于大尺寸薄膜光学元件,工件架转速存在限制的条件下,优化其他工艺参数可以获得均质SiO2薄膜材料,该结果对于制备具有优良性能的大尺寸薄膜光学元件具有借鉴意义。  相似文献   

10.
椭偏光散射分析类金刚石薄膜的散射特性   总被引:2,自引:2,他引:0       下载免费PDF全文
 基于光学薄膜反射椭偏法的测量原理,对光学薄膜散射椭偏特性进行了研究。给出了光学薄膜散射逆问题的解决方法,并对不同脉冲频率下采用脉冲真空电弧离子镀技术沉积的类金刚石薄膜的散射特性进行了研究。分析了光学薄膜界面的相关特性以及膜层中局部缺陷对散射光椭偏特性的影响。结果表明:随着脉冲频率的增加,所沉积的类金刚石薄膜的相关性变差,且薄膜中的局部缺陷引起的体散射越明显。  相似文献   

11.
光学薄膜厚度的均匀性   总被引:2,自引:0,他引:2  
<正> 光学薄膜厚度的均匀性,是薄膜制备技术中最重要的问题之一。这是因为,光学薄膜的性质,在很大程度上取决于它的厚度。在工作范围内薄膜厚度没有足够的均匀性,就无法获得优质的光学薄膜。有关膜厚分布问题,  相似文献   

12.
采用电子束蒸发法制备了Sc2O3单层薄膜和Sc2O3/SiO2多层反射膜.利用原子力显微镜、X射线衍射仪等方法对薄膜的表面和结构进行,研究.采用355 nm激光研究了Sc2O3/SiO2多层薄膜的损伤特性和预处理效应,并对Sc2O3的损伤原因进行了分析.实验发现,Sc2O3具有较宽的带隙,薄膜结构为立方相,影响Sc2O3/SiO2 多层反射膜抗损伤能力的主要因素足材料的纯度.  相似文献   

13.
单层膜体吸收与界面吸收研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用热透镜测量方法进行了SiO2和HfO2单层膜的体吸收与界面吸收分离研究.首先推导了光从薄膜侧及基底侧入射时单层膜内的驻波场分布,给出了单一厚度薄膜分离体吸收和界面吸收的计算方程式以及求解薄膜消光系数的方法.利用电子束蒸发工艺制备了半波长光学厚度(λ=1064 nm)的SiO2和HfO2单层膜,通过热透镜的测量数据实际分离了两种薄膜的体吸收和界面总吸收.计算结果表明,对于吸收小至10-6关键词: 驻波场理论 光热技术 薄膜吸收 消光系数  相似文献   

14.
光学薄膜的分层界面散射模型   总被引:4,自引:0,他引:4  
提出了一种计算光学介质膜系表面总积分散射(TIS)的理论模型。该模型认为,介质膜系粗糙的膜层界面和表面为微观结构不均匀的微薄过渡区;过渡区可用折射率为不同常量的层数足够多的均匀子层来代替,同时这些均匀子层的折射率变化满足指数函数的分布规律。利用矩阵法对积分散射的表达式进行了推导。对于电子束蒸发方法在K9玻璃上沉积的ZrO2单层膜,分层界面散射模型对积分散射的理论计算值要比非相关表面散射模型的计算值更加符合总积分散射仪的实验测量结果。  相似文献   

15.
采用PECVD技术在BK7玻璃基底上沉积了不同厚度的单层SiO2(折射率为1.46)和SiNx(折射率为1.84)光学薄膜,并对这2种膜层进行抗激光损伤阈值(LIDT)测试,分析讨论了PECVD技术制备的单层光学薄膜与抗激光损伤特性之间的关系。实验结果表明:PECVD技术制备的单层SiO2薄膜有较高的LIDT,薄膜光学厚度在o/4~o/2之间时,在光学厚度为350 nm时,LIDT有最小值21.7 J/cm2,光学厚度为433 nm时,LIDT有最大值27.9 J/cm2。SiNx薄膜的LIDT随着光学厚度增加而减小,在光学厚度为o/4时,LIDT有最大值29.3 J/cm2,光学厚度为o/2时,LIDT有最小值4.9 J/cm2。  相似文献   

16.
广泛用子光学多层膜的真空蒸发ZrO_2~-薄膜若用于多层增透膜则存在一个缺点,这个缺点是由薄膜的折射率随着厚度增加而降低的光学非均匀性产生的。为了改善ZrO_2~-膜的光学均匀性,在ZrO_2~-蒸发物中添加TiO_3~-和Y_2O_3,并研究了用电子束蒸发的淀职膜的晶体结构。添加TiO_2的淀积膜的光折射率几乎是均匀的,薄膜的结构是不定形的;添加Y_2~-O_3~-的淀积膜显示出相当低的光学不均匀性和稳定的立方晶构造。通过适当添加Ti_2~-和Y_2~-O_3得到了用于多层膜的最适宜的ZrO_2~-膜;这种膜具有好的光学均匀性及足够的和可变的折射率,增加了硬度,并具有可靠的重复性。此外,从一种蒸发料片反复蒸发的薄膜的X射线衍射和X射线荧光分析的结果,推测了ZrO_2~-淀积膜的不均匀性的原因。  相似文献   

17.
从麦克斯韦方程出发,可以得到超薄金属膜层光学常数n、k与其厚度有关系的理论依据。采用电阻热蒸发和电子束热蒸发的方法在K9玻璃基底上分别沉积了不同厚度的Cu膜、Cr膜、Ag膜,由椭偏法检测、Drude模型拟合,获得了不同厚度Cu膜、Cr膜、Ag膜光学常数n、k随波长λ的变化规律。超薄金属薄膜与块状金属的光学常数相差较大,随着薄膜厚度的增加,n、k值趋近于块状金属。通过对样品膜层吸收、色散特性的分析,发现连续金属薄膜在可见光波段对长波的吸收较大,而且相比于介质薄膜平均色散率高10mn~102nm量级。  相似文献   

18.
弥谦  赵磊 《应用光学》2014,35(2):248-253
光学薄膜的光学特性与其每一膜层的厚度密切相关,为了制备出符合要求的光学薄膜产品,在制备过程中必须监控膜厚。光学薄膜实时监控精度决定了所镀制的光学薄膜的厚度精度。针对光电极值法极值点附近监控精度低、无法精确监控非规整膜系的缺陷,提出了新的光学薄膜膜厚监控算法。该算法通过数学运算,使得光学薄膜的光学厚度与透射率呈线性关系,并且有效地消除光源波动、传输噪声等共模干扰的影响,算法精度可控制在2%以内。  相似文献   

19.
用直流磁控溅射技术在石英基片上制备不同厚度(5nm~114nm之间)的铬膜.使用X射线衍射仪和分光光度计分别检测薄膜的结构和光学性质,利用德鲁特模型和薄膜的透射、反射光谱计算铬膜的厚度和光学常量,并采用Van der Pauw方法测量薄膜电学性质.结果表明:制备的铬薄膜为体心立方的多晶态,随着膜厚的增加,薄膜的结晶性能提高,晶粒尺寸增大;在可见光区域,当膜厚小于32nm时,随着膜厚的增加,折射率快速减小,消光系数快速增大,当膜厚大于32nm时,折射率和消光系数均缓慢减小并逐渐趋于稳定;薄膜电阻率随膜厚的增加为一次指数衰减.  相似文献   

20.
用直流磁控溅射技术在石英基片上制备不同厚度(5 nm~114 nm之间)的铬膜.使用X射线衍射仪和分光光度计分别检测薄膜的结构和光学性质,利用德鲁特模型和薄膜的透射、反射光谱计算铬膜的厚度和光学常量,并采用Van der Pauw方法测量薄膜电学性质.结果表明:制备的铬薄膜为体心立方的多晶态,随着膜厚的增加,薄膜的结晶性能提高,晶粒尺寸增大;在可见光区域,当膜厚小于32 nm时,随着膜厚的增加,折射率快速减小,消光系数快速增大,当膜厚大于32 nm时,折射率和消光系数均缓慢减小并逐渐趋于稳定;薄膜电阻率随膜厚的增加为一次指数衰减.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号