首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Efficient design of optoelectronic devices based on electron intersubband transitions depends critically on the knowledge of the intersubband relaxation times which in turn, depends on electron scattering with LO and acoustic phonons. In this article the intersubband scattering time associated with electron–acoustic-phonon interaction has been discussed in terms of phonon mode quantization and phonon confinement with describing the acoustic phonon dispersion relation in detail by introducing the cut-off frequency for each mode. It has been shown that the quantization of acoustic phonon modes lead to an enhancement in electron–phonon scattering time in AlGaAs quantum well structures. Based on the presented model, a new tailoring method has presented to adjust the electron–phonon scattering time in intersubband-transition-based structures while keeping the electronic properties unaltered. Also, we illustrated that for a quantum well with subband energy separation of ∼30 meV, the intersubband scattering time with acoustic-phonon-assisted transitions could be tailored from ∼120 ps to increased value of ∼400 ps or reduced value of ∼45 ps by inserting a 1 nm-thickacoustically soft or hard layers, respectively, while keeping the same the initial energy separation.  相似文献   

2.
张德生  康广震  李俊 《中国物理 B》2015,24(1):17301-017301
The kink structure in the quasiparticle spectrum of electrons in graphene observed at 200 me V below the Fermi level by angle-resolved photoemission spectroscopy(ARPES)was claimed to be caused by a tight-binding electron–phonon(e–ph)coupling in the previous theoretical studies.However,we numerically find that the e–ph coupling effect in this approach is too weak to account for the ARPES data.The former agreement between this approach and the ARPES data is due to an enlargement of the coupling constant by almost four times.  相似文献   

3.
We investigate the electron–phonon interaction in a polar–polar single heterostructure through the use of the linear combination of hybrid phonon modes, considering the role of longitudinal optical, transverse optical and interface modes, using a continuum model that accounts for both mechanical and electrical continuity over a heterostructure interface. We discuss the use of other models for such systems, such as the bulk phonon (3DP) and dielectric continuum (DC) models, using previously developed sum-rules to explain the limitations on their validity. We find that our linear combination (LC) model gives an excellent agreement with scattering rates previously derived using the 3DP and DC models when the lattice dispersion is weak enough to be ignored, however, when there is a noticeable lattice dispersion, the LC model returns a different answer, suggesting that interface modes play a much greater part in the scattering characteristics of the system under certain conditions. We also discuss the remote phonon effect in polar/polar heterostructures.  相似文献   

4.
Electronic Raman scattering in YB6 and in its structural and electronic analog LaB6 has been studied in the temperature range of 10–730 K. The experimental spectra have been compared to those calculated on the basis of ab initio band structures with renormalization owing to the electron–phonon interaction. Good agreement between the calculation and experiment for LaB6 has been obtained throughout the entire temperature range. This allows the determination of the coupling constant λ ep = 0.25. To satisfactorily describe the spectra of electronic light scattering in YB6, it is necessary to introduce an additional electron relaxation channel. In this case, the estimate of the electron–phonon coupling constant λ ep is no more than 0.4; for this reason, a high superconducting transition temperature cannot be explained only by the phonon mechanism.  相似文献   

5.
Optical vibrations of the lattice and the electron-phonon interaction in polar ternary mixed crystals are studied in the framework of the continuum model of Born and Huang and the random-element-isodisplacement model. A normal-coordinate system to describe the optical vibration in ternary mixed crystals is correctly adopted to derive a new Fr?hlich-like Hamiltonian for the electron-phonon interaction including the unit-cell volume variation influence. The numerical results for the phonon modes, the electron-phonon coupling constants and the polaronic energies for several typical materials are obtained. It is verified that the nonlinearity of the electron-phonon coupling effects with the composition is essential and the unit-cell volume effects cannot be neglected for most ternary mixed crystals.  相似文献   

6.
We have carried out a theoretical calculation of the differential cross section for the electron Raman scattering process associated with the surface optical phonon modes in a semiconductor quantum disc.electron states are considered to be confined within a quantum disc with infinite potential barriers.The optical phonon modes we have adopted are the slab phonon modes by taking into consideration the Frohlich interaction between an electron and a phonon.The selection rules for the Raman process are given.Numerical results and a discussion are also presented for various radii and thicknesses of the disc,and different incident radiation energies.  相似文献   

7.
Temperature-dependent Raman investigations of titanium in the α and pressure-quenched ω-phase have been carried out. The results obtained suggest the possible coexistence of both phases at ambient pressure and low temperatures. Comparison of the low-temperature E2g phonon self-energies in both phases with simulations based on the calculated electronic structures for α- and ω-Ti implies significant contributions from non-adiabatic electron–phonon interactions.  相似文献   

8.
Counter-rotating-wave terms(CRWTs)are traditionally viewed to be crucial in open small quantum systems with strong system–bath dissipation.Here by exemplifying in a nonequilibrium qubit–phonon hybrid model,we show that CRWTs can play the significant role in quantum heat transfer even with weak system–bath dissipation.By using extended coherent phonon states,we obtain the quantum master equation with heat exchange rates contributed by rotating-waveterms(RWTs)and CRWTs,respectively.We find that including only RWTs,the steady state heat current and current fluctuations will be significantly suppressed at large temperature bias,whereas they are strongly enhanced by considering CRWTs in addition.Furthermore,for the phonon statistics,the average phonon number and two-phonon correlation are nearly insensitive to strong qubit–phonon hybridization with only RWTs,whereas they will be dramatically cooled down via the cooperative transitions based on CRWTs in addition.Therefore,CRWTs in quantum heat transfer system should be treated carefully.  相似文献   

9.
The persistent current in the ground state of a quantum ring threaded by a magnetic flux is calculated within the framework of the Holstein-Hubbard model. It is found that the persistent current is suppressed by both the electron–electron and electron–phonon interactions. Calculation of Drude weight reveals that the persistent current is diamagnetic in nature. It is observed that as the number of atoms in the quantum ring increases, the persistent current decays in a continuous way. It is finally predicted that there exists an intervening metallic phase flanked in real time by two insulating phases, the SDW phase and the CDW phase.  相似文献   

10.
We study the formation of spontaneous spin polarization in inhomogeneous electron systems with pair interaction localized in a small region that is not separated by a barrier from surrounding gas of non-interacting electrons. Such a system is interesting as a minimal model of a quantum point contact in which the electron–electron interaction is strong in a small constriction coupled to electron reservoirs without barriers. Based on the analysis of the grand potential within the self-consistent field approximation, we find that the formation of the polarized state strongly differs from the Bloch or Stoner transition in homogeneous interacting systems. The main difference is that a metastable state appears in the critical point in addition to the globally stable state, so that when the interaction parameter exceeds a critical value, two states coexist. One state has spin polarization and the other is unpolarized. Another feature is that the spin polarization increases continuously with the interaction parameter and has a square-root singularity in the critical point. We study the critical conditions and the grand potentials of the polarized and unpolarized states for one-dimensional and two-dimensional models in the case of extremely small size of the interaction region.  相似文献   

11.
Based on the statistical dynamic mean-field theory, we investigate, in a generic model for a strongly coupled disordered electron–phonon system, the competition between polaron formation and Anderson localization. The statistical dynamic mean-field approximation maps the lattice problem to an ensemble of self-consistently embedded impurity problems. It is a probabilistic approach, focusing on the distribution instead of the average values for observables of interest. We solve the self-consistent equations of the theory with a Monte Carlo sampling technique, representing distributions for random variables by random samples, and discuss various ways to determine mobility edges from the random sample for the local Green function. Specifically, we give, as a function of the ‘polaron parameters’, such as adiabaticity and electron–phonon coupling constants, a detailed discussion of the localization properties of a single polaron, using a bare electron as a reference system.  相似文献   

12.
《Physics letters. A》1999,259(6):466-475
The effects of squeezing-antisqueezing resulting from the motion and density fluctuation of the electrons on the properties of both electrons and phonons have been studied by using a new variational ansatz with correlated displacement and squeezing in strongly coupled electron–phonon systems. The effects results in (1) reduction of the ground state energy, and enhancement of stability of the systems, (2) increase of the binding energy of the polaron occurred and weakening of growing speed of polaron narrowing of electron band, (3) increase of the charge density wave order and (4) suppression of increased tendency of anomalous quantum fluctuation of the phonons in the systems. The antisqueezed effect plays an important role in determining the properties of the electrons and phonons in the strongly coupled electron–phonon systems.  相似文献   

13.
The interaction between electron excitations and LO phonons is studied by Raman scattering inδ-doping GaAs superlattices. The Raman spectra measured close to the E0 +  Δ0resonance of GaAs present Fano-like coupling of the LO phonons with the quasicontinuum single-particle electron excitations. Due to the self-consistent origin of the electron-energy spectrum in δ-doping superlattices the resonance of the Fano interference was found to be strongly dependent on the electron density as well as the excitation energy.  相似文献   

14.
We have calculated the structural and electronic properties of SrPtAs in a hexagonal KZnAs-type of crystal structure using a generalized gradient approximation of the density functional theory and the ab initio planewave pseudopotential method. These results are used to further calculate the phonon dispersions curves and the phonon density of states using a linear response approach based on the density functional theory. Using the electronic and phonon results, the electron–phonon coupling is computed to be of the intermediate strength of 0.78. In large part, this is contributed by the phonon modes dominated by the vibrations of Pt and As atoms. The superconducting critical temperature is estimated to be 1.9 K, in good accord with its experimental value of 2.4 K.  相似文献   

15.
The effect of phonon scattering on electrical conductivity (EC) of 2D electron gas in quantum well (QW) systems with a complicated potential profile is described. Dependence of QW electrical conductivity on QW parameters (such as QW width, Fermi level positions etc.) when phonon scattering is employed has been calculated. NDC in EC when it varies with width of the QW has been found.  相似文献   

16.
ZnO nanocombs with different sizes are synthesized by simple thermal evaporation methods. Scanning electron microscopy and transmission election microscopy testify the growth of single crystal ZnO nanocombs along [0 0 0 2] direction. The temperature-dependent Raman spectra show that the intensity of surface optical (SO) modes in ZnO nanocombs obviously increases with declining measure temperatures. With the decrease of diameters, the frequency of SO modes shows a blue shift due to the passivation of surface states. The resonant Raman scattering shows that the strength of electron–phonon coupling increases with decreasing size. Calculated on size-dependent electron–phonon interaction energy agrees well with measured values for a large size range. The origin of electron–phonon coupling in ZnO nanocombs is also discussed.  相似文献   

17.
Several recent studies of phonons combining inelastic neutron scattering and first-principles calculations are summarized. Inelastic neutron scattering was used to measure the phonon densities of states of the A15 compounds V3Si, V3Ge, and V3Co at temperatures from 10 K to 1273 K. It was found that phonons in V3Si and V3Ge, which are superconducting at low temperatures, exhibit an anomalous stiffening with increasing temperature, whereas phonons in V3Co have a normal softening behavior. Additional measurements of the phonon DOS of BCC V alloys were performed, and it was found that a stiffening anomaly present in pure V is suppressed upon introduction of extra d-electrons by alloying. First-principles calculations of the electronic and phonon densities of states show that in both these systems, the anomalous phonon stiffening originates with an adiabatic electron–phonon coupling mechanism. The anomaly is caused by the thermally-induced broadening of sharp peaks in the electronic density of states, which tends to decrease the electronic density at the Fermi level. These results illustrate how the combined use of first-principles calculations and inelastic neutron scattering provides powerful insights into couplings of excitations in condensed-matter.  相似文献   

18.
We examine in detail the theory of the intrinsic non-linearities in the dynamics of trapped ions due to the Coulomb interaction. In particular, the possibility of mode–mode coupling, which can be a source of decoherence in trapped ion quantum computation, or can be exploited for parametric down-conversion of phonons, is discussed and conditions under which such coupling is possible are derived. Received: 8 November 2002 / Published online: 26 March 2003 RID="*" ID="*"Permanent address: MIP, Université Pierre et Marie Curie and Département de Physique, école Normale Supérieure, 75005 Paris, France RID="**" ID="**"Corresponding author. Fax: +1-505/667-1931, E-mail: dfvj@lanl.gov  相似文献   

19.
20.
Using the Density Functional Theory (DFT) within the Generalized Gradient Approximation (GGA) pseudopotential and plane wave basis method along with the frozen-phonon approach that starts from the ab initio evaluation of the total energy Etot of the solid with frozen-in atomic displacements, it is found that a superposition of A2u and the E2gvibrations modes is the key factor in the superconducting mechanism in MgB2 compound. Electron–Phonon coupling to these A2u and E2g phonon modes especially at the zone-boundary A point of the hexagonal Brilliouin zone leads to an interband hole charge transfer (and transfer back) between in-plane σ bond to the out-of-plane π bond along with an interatomic electron charge transfer (and transfer back) between the Magnesium s-states to the Boron out-of-plane pz-state. The direction of the electronic current is opposite to that of hole current so that it reinforces the polarization associated with these currents and may generate a large dynamical charge at a given critical temperature Tc that drives the compound into the superconducting state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号