首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ measurements of the magnetic susceptibility of ordered and disordered titanium monoxides TiOy in the temperature range from 300 to 1200 K have revealed that it depends on the size of crystals, their stoichiometry, and long-range order parameters. Analysis of the data for both the ordered and disordered TiOy has demonstrated that the dependence of the Van Vleck paramagnetism on the nanocrystal size is inversely proportional due to the breaking of symmetry of the local environment of titanium and oxygen atoms near the surface of nanocrystals. It has been found that the Van Vleck contribution from the atomic vacancy disorder in monoxide nanocrystals of superstoichiometric composition, as well as in the crystalline stoichiometric monoxide, is proportional to the deviation of the degree of long-range order from the maximum value.  相似文献   

2.
The conductivity and magnetic susceptibility of disordered titanium monoxide TiOy (0.920≤y≤1.262) containing vacancies in titanium and oxygen sublattices are investigated. For TiOy monoxides with an oxygen content y≤1.069, the temperature dependences of the conductivity are described by the Bloch-Grüneisen function at a Debye temperature ranging from 400 to 480 K and the temperature dependences of the magnetic susceptibility are characterized by the contribution from the Pauli paramagnetism due to conduction electrons. The behavior of the conductivity and magnetic susceptibility of TiOy monoxides with an oxygen content y≥1.087 is characteristic of narrow-gap semiconductors with nondegenerate charge carriers governed by the Boltzmann statistics. The band gap ΔE between the valence and conduction bands of TiOy monoxides with y≥1.087 falls in the range 0.06–0.17 eV.  相似文献   

3.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

4.
The interpretation of diffraction spectra of ordered high-temperature phases of solid solutions and strongly nonstoichiometric compounds is discussed. It has been shown that variations of the intensities of superstructure reflections, which cannot be explained within simple ordering models, can be due to the superposition of superstructures with different symmetries in the matrix of the basis crystal structure. Using an example of atom–vacancy ordering in TiO1.0 titanium monoxide, a model of the order–order transition state formed by the superposition of low-temperature monoclinic (space group A2/m (C2/m)) and high-temperature cubic (space group Pm3?m) M5X5 superstructures has been proposed. It has been shown that the transition state is thermodynamically equilibrium and should be implemented instead of the M5X5 cubic superstructure. The transition state model can be considered as an M(5–i)X(5–i) superstructure (i = 1, 14/18, 11/18) with the monoclinic symmetry (space group P1m1).  相似文献   

5.
The concentration dependences of the magnetic susceptibility and lattice parameter of cubic vanadium monoxide have been measured in the composition range from VO0.81 to VO1.07. Near the stoichiometric composition VO1.00, the concentration dependences exhibit a stepwise increase in the specific magnetic susceptibility (by approximately 0.7 × 10?6 cm3/g) and lattice constant (by about 0.002 nm). These effects can be related to the concentration phase transition, which occurs in vanadium monoxide with a change from a substoichiometric composition to superstoichiometric. At such a transition, along with a decrease in the concentration of oxygen vacancies, tetrahedrally coordinated vanadium interstitials are formed, as a result of which the B1 structure changes to a more complex cubic phase structure with the same space group Fm-3m.  相似文献   

6.
Single-crystal samples of the Bi2 + xSr2 ? x ? yCu1 + yO6 + δ system revealed anomalous (negative) thermal expansion in the temperature range 10–20 K. Magnetic fields of 1–3 T were found to strongly affect the position and width of the anomaly region. A thermal-expansion singularity was detected at temperatures T≈30–50 K, which may be related to the formation of a pseudogap.  相似文献   

7.
The elastic moduli and elastic constants of the ternary semiconductor alloy Al y Ga1-yAs at finite temperature have been investigated using the statistical moment method. The Young, shear, bulk moduli and elastic constants C11, C12, C44 of the zinc-blende Al y Ga1?yAs crystal are calculated as functions of Al composition and temperature. Numerical calculations have been performed and compared with those of the experimental and other theoretical results showing the reasonable agreements. Our study shows that elastic moduli and C11, C12 constants of zinc-blende Al y Ga1?yAs alloy are decreasing functions of the temperature and Al composition; C44 constant is a decreasing function of the Al composition.  相似文献   

8.
This paper reports on a study of the effect of doping with Na2CO3, NaCl, and KClO3 salts on the microstructure and superconducting characteristics of ceramics with nominal compositions Dy1 ? x M x Ba2Cu3 ? y O7 ? δ and DyBa2Cu3 ? y O7 ? δ : M x for M = Na, K; x = 0.2, 0.3, and y = 0, 0.2. The microstructure was characterized by transmission electron microscopy with local energy-dispersive x-ray in situ analysis (probe size ~1 nm). An analysis shows that none of the doping elements (Na, K, or Cl) enters into 123 grains in sizable amounts and that, as a result, the critical temperature of the superconducting transition remains practically constant in the range 90.0–93.5 K. Potassium and chlorine segregate at grain boundaries. It is shown that grain-boundary segregation of chlorine leads to a substantial increase in the superconducting critical current (by a factor 3–5 at 70 K) as compared to the undoped sample. The possible mechanisms accounting for the effect of Cl on intergrain critical current are discussed.  相似文献   

9.
The magnetization M(H) in the superconducting state, dc magnetic susceptibility χ(T) in the normal state, and specific heat C(T) near the superconducting transition temperature T c have been measured for a series of fine-crystalline YBa2Cu3O y samples having nearly optimum values of y = 6.93 ± 0.3 and T c = (91.5 ± 0.5) K. The samples differ only in the degree of nanoscale structural inhomogeneity. The characteristic parameters of superconductors (the London penetration depth and the Ginzburg–Landau parameter) and the thermodynamic critical field H c are determined by the analysis of the magnetization curves M(H). It is found that the increase in the degree of nanoscale structural inhomogeneity leads to an increase in the characteristic parameters of superconductors and a decrease in H c(T) and the jump of the specific heat ΔC/T c. It is shown that the changes in the physical characteristics are caused by the suppression of the density of states near the Fermi level. The pseudogap is estimated by analyzing χ(T). It is found that the nanoscale structural inhomogeneity significantly enhances and probably even creates the pseudogap regime in the optimally doped high-T c superconductors.  相似文献   

10.
The temperature dependence of the Nernst-Ettingshausen coefficient Q(T) in the normal phase of doped HTSCs of the yttrium system was studied. The main features characterizing the behavior of this coefficient were revealed, and the character and mechanism of the effect that various nonisovalent substituents exert on the Q(T) dependence were analyzed. It is shown that the narrow-band model permits one not only to describe all the specific features observed in the Q(T) curves but also to perform a simultaneous quantitative analysis of the temperature dependences of four kinetic coefficients (the electrical resistivity and the Seebeck, Hall, and Nernst-Ettingshausen coefficients) with the use of a common set of model parameters characterizing the band structure and carrier system in the normal phase of an HTSC. This approach was employed to determine the carrier mobilities and the asymmetry of the dispersion curve in the systems studied (YBa2Cu3Oy, y = 6.37–6.91; YBa2Cu3?xCoxOy, x = 0–0.3; Y1?xCaxBa2Cu3Oy, x = 0–0.25; Y1?xCaxBa2?xLaxCu3Oy, x = 0–0.5) and to analyze the effect of the substitutions involved on the variation of these parameters.  相似文献   

11.
Nanocrystalline powders of the nonstoichiometric tantalum carbide TaCy (0.81 ≤ y ≤ 0.96) with an average particle size in the range from 45 to 20 nm have been prepared using high-energy ball milling of coarse-grained powders. The density of the initial coarse-grained and prepared nanocrystalline powders of TaCy has been measured by helium pycnometry. The sizes of particles in tantalum carbide powders have been estimated using the X-ray diffraction analysis and the Brunauer–Emmett–Teller (BET) method. The density of TaCy nanopowders measured by helium pycnometry is underestimated as compared to the true density due to the adsorption of helium by the highly developed surface of the nanocrystalline powders. It has been shown that the difference between the true and measured densities is proportional to the specific surface area or is inversely proportional to the average particle size of the nanopowders. The large difference between the true and measured pycnometric densities indicates a superhydrophobicity of the tantalum carbide nanopowders.  相似文献   

12.
The thermoelectric properties of n-Bi2 ? x Sb x Te3 ? y ? z Se y S z solid solutions are studied in the temperature range 300–550 K. It is shown that an increase in the parameter β determining the figure-of-merit Z of the material is observed in compositions with the optimally related effective mass of the density of states m/m 0, the carrier mobility μ0, and the lattice thermal conductivity κ L . Within the temperature range 300–350 K, the parameter β and the figure-of-merit Z are found to increase in solid solutions with substitutions in both bismuth telluride sublattices Bi → Sb and Te → Se, S (x = 0.16, y = z = 0.12) for optimum electron concentrations. An increase in the electron concentration and substitutions of atoms only in the tellurium sublattice bring about an increase in the β parameter and the value of Z at higher temperatures. Within the range 350–450 K, the parameters β and Z are observed to increase in a solid solution with a low content of substituted atoms in the tellurium sublattice Te → Se, S for y = z = 0.09 and, at higher temperatures up to 550 K, in compositions with tellurium substituted by selenium only, with increasing content of substituted atoms.  相似文献   

13.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

14.
The atom-vacancy ordering of cubic vanadium monoxide VO1.29, which has basis cubic structure B1 and structural vacancies in the metal sublattice, has been studied using the x-ray diffraction method. It has been shown that the formation of the tetragonal (space group I41/amd) ordered phase V52O64 of cubic vanadium monoxide VOy proceeds as a first-order phase transition through the disorder-order channel including 22 nonequivalent superstructure vectors of four stars {k 10}, {k 4}, {k 3}, and {k 2}. The distribution function of the vanadium atoms in the V52O64 tetragonal superstructure has been calculated.  相似文献   

15.
A comparative analysis of the results of the X-ray and Mösbauer studies of the high-temperature superconductor (HTSC) YBa2Cu3O y and YBa2Cu3 ? x 57Fe x O y (x = 0.015, T c ≈ 91.5 K) samples with different average grain sizes <D> in the micron and submicron ranges has been performed. The regularities in the change in the lattice parameter c and in the degree of occupation of different oxygen sites in the CuOδ chain planes taking place at the decrease in <D> have been studied. The quantitative interrelation between the parameter c and the oxygen content δ in the CuOδ planes exceeding the amount of the mobile oxygen due to the interplane oxygen redistribution is established.  相似文献   

16.
It is found that the expansion of the low-temperature specific heat C p of the antiferromagnetic metallic compounds GdCu, GdCu2, and GdCu5 contains a large term that is proportional to the square of temperature (δT 2). The value of δ is inversely proportional to the Néel temperature T N. The GdCu2 compound exhibits a strong dependence of the specific heat anomaly at T N on an external magnetic field. The results obtained are compared with the data for other metal antiferromagnets, for example, the CuMnSb Heusler alloy.  相似文献   

17.
The monoclinic (space group C2/m) superstructure of the suboxide V14O6, which is formed as a result of the atomic and vacancy ordering of the tetragonal solid solution of oxygen in vanadium, is investigated using X-ray diffraction and symmetry analysis. The monoclinic suboxide V14O6 is observed in the vanadium oxide samples VO0.57, VO0.81, and VO0.86 synthesized at 1770 K and the samples VO y (0.87 ≤ y ≤ 0.98) additionally annealed at 1470 K after the synthesis. It is established that the channel of the disorder-order phase transition associated with the formation of the monoclinic suboxide V14O6 includes six superstructure vectors belonging to three non-Lifshitz stars of one type {k 1}. The distribution function of the oxygen atoms in the monoclinic superstructure of the suboxide V14O6 is calculated. It is demonstrated that the displacements of vanadium atoms distort the body-centered tetragonal metal sublattice, thus preparing the formation of the facecentered cubic sublattice and the transition from the suboxide V14O6 to the cubic vanadium monoxide with the B1 structure.  相似文献   

18.
The reversible magnetic torque of untwinned YBa2Cu3O7 single crystals shows the four-fold symmetry in thea-b plane. The irreversible torque indicates evidence for a novel intrinsic pinning along thea andb axes. These facts mean that the free energy of the four-fold symmetry has a minimum when the field is applied along thea orb axis. The results are consistent with those expected from thed x 2?y 2 symmetry and rule out the possibility of thed xy symmetry. The Fermi surface anisotropy is not responsible for the observed anisotropy. This is firstbulk evidence for thek-dependent gap anisotropy on the Fermi surface. The two-fold anisotropy parameter is found as\(\gamma _{ab} = \sqrt {{{m_a } \mathord{\left/ {\vphantom {{m_a } {m_b }}} \right. \kern-\nulldelimiterspace} {m_b }}} = 1.18 \pm 0.14\).  相似文献   

19.
Local atomic environment of vacancies in nonstoichiometric titanium monoxide ranging in composition from TiO0.74 to TiO1.26 was studied by electron-positron annihilation. Analysis of the Doppler broadening spectra of the annihilation gamma line for titanium and liquid oxygen showed that positrons in titanium monoxide are trapped by titanium vacancies. Experiments revealed that the lifetime of positrons in ordered and disordered titanium monoxide TiO y increases with increasing oxygen content y and varies from 184 to 210 ps. Data on the valence electron density permitted the prediction that the lifetime of free positrons in stoichiometric titanium monoxide is about 140 ps and the lifetime of positrons localized in an oxygen vacancy is about 170 ps. The method used to analyze the gamma-line Doppler broadening spectra makes it possible to determine the type and number of atoms around a vacancy and to investigate order-disorder phase transformations in nonstoichiometric compounds.  相似文献   

20.
The EPR spectrum of a KDy(WO4)2 monoclinic crystal is investigated. It is found that the EPR spectrum of magnetically concentrated materials at a low frequency (9.2 GHz) undergoes a substantial transformation in addition to the well-known broadening of the EPR lines. At low Dy3+ concentrations (x<10?2), the EPR spectrum of an isomorphic crystal, namely, KY(1?x)Dyx(WO4)2, is characterized by the parameters gx=0, gy=1.54, and gz=14.6. For a magnetically concentrated crystal KDy(WO4)2, the g values are as follows: gx=0, gy=0.82, and gz=2.52. It is demonstrated that the difference in the parameters is associated with the specific spin-spin interaction between Dy3+ ions, including the Dzyaloshinski interaction, which is not observed at high frequencies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号