首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

To investigate the non-linear optical properties of nitrophenylhydrazones, a series of 4-nitro- and 2,4-dinitrophenylhydrazones of substituted aromatic aldehydes were synthesized. It was found that many of the dinitrophenythydrazone derivatives are liquid-crystalline and X-ray investigations show that the mesophase corresponds to a hexagonal columnar structure. To explain this unusual behaviour it is necessary to assume that a mesogenic structure is formed by intramolecular hydrogen bonding of the dinitrophenylhydrazones. Charge transfer induced antiparallel alignment of these moleculer dipoles leads to discoid structures, forming the columnar phases.  相似文献   

2.
Chiral columnar liquid crystals have recently appeared as a promising new type of ferroelectric materials. To date, all the columnar liquid crystals that have been reported to show ferroelectric switching consist of organic compounds. However, metal-containing liquid crystals open this field to a significant number of new structures and offer the possibility of adding to the ferroelectric behavior other properties inherent to the presence of metals in the structure, such as magnetism, as well as the use of new methods of characterization (EPR, synchrotron radiation, etc.). The potential of columnar metal-containing liquid crystals as ferroelectric materials has been demonstrated even though only a few organic columnar ferroelectric liquid crystals have been described. As a first approach to this type of material, this concepts article describes the results obtained with chiral metal beta-diketonates that show ferroelectric switching in the columnar mesophase. It has been shown that these materials have a helical columnar arrangement in the mesomorphic state, and a chiral superstructure has been proposed from circular dichroism studies. This type of supramolecular structure plays a fundamental role in the ferroelectric properties of these compounds. The discussion is mainly focused on the strategy employed for the molecular design, and on the interpretation of the mesophase structure and the electrooptic effect. The use of a diverse range of techniques, both those commonly used in the field of liquid crystals and those that are more specific will be highlighted, and the principles of these specific techniques are summarized together with a justification of their applicability to this study.  相似文献   

3.
The present report undertakes a challenge of general interest in supramolecular chemistry: the achievement of helical organizations with controlled structure. To achieve this target we considered the possibility of inducing supramolecular chirality using molecules that were designed to organize into columnar mesophases. The use of oxazoline-derived ligands and metal coordination served as tools to prepare molecules with a phasmidic-like structure, which show columnar organization in the liquid crystalline state. To ensure the formation of chiral mesophases, these complexes bear stereogenic centers in the rigid coordination environment of the metal. X-ray and circular dichroism experiments have revealed that chirality transfer does indeed take place from the chiral molecule to the columnar liquid crystal organization. This chiral columnar organization appears as a helix consisting of stacks of molecules that rotate with respect to one another along the column while maintaining their mean planes parallel to each other. In fact, it has been concluded that packing of these polycatenar molecules must be more efficient upon rotation of a molecule with respect to the adjacent one along the column. Furthermore, the same type of helical supraorganization has been found to be present in the mesophase of the racemic mixture and the mixture of diastereomers prepared from the racemic ligand. In this case, segregation of the optical isomers is proposed to occur to give rise to both types of helix (right-handed and left-handed).  相似文献   

4.
Theory predicts that the deposition of a nanostructured dielectric film on the surface of a semiconductor quantum well will modulate its optical properties due to interactions between the quantum well exciton and the dielectric structure. We have chosen a columnar discotic triphenylene as dielectric medium since the columnar structure is able to provide spatial, and thus dielectric, modulations both on a 2 or a 0.4 nm scale, depending on the columnar orientation within the film. Film deposition on quantum well structures and model substrates by spincoating and via the vapour phase, in combination with annealing steps, gave rise to a rich spectrum of textural modifications and columnar orientations in the dielectric films. The investigations revealed significant modulations of the optical properties of the quantum well as a function of the textures and the columnar orientational order.  相似文献   

5.
A. Bayer  C. Stillings 《Liquid crystals》2013,40(10):1103-1111
Theory predicts that the deposition of a nanostructured dielectric film on the surface of a semiconductor quantum well will modulate its optical properties due to interactions between the quantum well exciton and the dielectric structure. We have chosen a columnar discotic triphenylene as dielectric medium since the columnar structure is able to provide spatial, and thus dielectric, modulations both on a 2 or a 0.4 nm scale, depending on the columnar orientation within the film. Film deposition on quantum well structures and model substrates by spincoating and via the vapour phase, in combination with annealing steps, gave rise to a rich spectrum of textural modifications and columnar orientations in the dielectric films. The investigations revealed significant modulations of the optical properties of the quantum well as a function of the textures and the columnar orientational order.  相似文献   

6.
The structure, organic matrix, and mineral structure of the scar (the interface between the adductor muscle and the shell) in Mytilus galloprovincialis were investigated. The scar was found to be a hierarchically multilayered structure composed of organic matrix and structurally different minerals. Different from the aragonite structure of the nacre, we have identified the top layer of the scar to contain structurally organized columnar calcite. This is the first report on calcite-containing scar. Study of the organic matrix showed that there was at least one protein that seemed to be preferentially localized in this columnar layer. Since the scar is the most important stress distribution site in the mussel, the function of the columnar structure and the matrix protein was discussed in relation to a similar structure at the tendon–bone connection site.  相似文献   

7.
The effect of hydrostatic pressure on the structure of a plastic columnar discotic triphenylene has been investigated. The goal was to determine whether pressure can be used to modify electronic properties via changes in structural properties of columnar discotics to any significant extent. The findings are that (i) the intra‐ and inter‐columnar distances are reduced in a nearly isotropic fashion, (ii) that the crystal sizes are reduced and (iii) that a transition takes place from a more highly ordered plastic columnar to a less ordered hexagonal columnar state with increasing pressure. The induced decrease of the molecular distances, amounting to 6% for pressures up to 17?kbar, are clearly too small to induce an appreciable modification of the electronic structure and thus opto‐electronic properties.  相似文献   

8.
以聚乙二醇(PEG-10000)辅助,在室温(25℃)-F由MgCl2-6H2O与Na2CO3通过层一层自组装制备出具有六棱柱状形貌的MgO,并以其对含铅溶液的吸附为探针反应,研究其对重金属离子的吸附性能.研究结果表明,所制备氧化镁的前驱体为MgCO3·3H2O;经600℃焙烧得到的六棱柱状MgO比表面积大于55m^2/g,具有良好的吸附性能;对含铅溶液的吸附过程符合Langmuir等温吸附,饱和吸附量达到390mg/g.  相似文献   

9.
The effect of hydrostatic pressure on the structure of a plastic columnar discotic triphenylene has been investigated. The goal was to determine whether pressure can be used to modify electronic properties via changes in structural properties of columnar discotics to any significant extent. The findings are that (i) the intra- and inter-columnar distances are reduced in a nearly isotropic fashion, (ii) that the crystal sizes are reduced and (iii) that a transition takes place from a more highly ordered plastic columnar to a less ordered hexagonal columnar state with increasing pressure. The induced decrease of the molecular distances, amounting to 6% for pressures up to 17 kbar, are clearly too small to induce an appreciable modification of the electronic structure and thus opto-electronic properties.  相似文献   

10.
A new perylene bisimide (PBI) dye self‐assembles through hydrogen bonds and π–π interactions into J‐aggregates that in turn self‐organize into liquid‐crystalline (LC) columnar hexagonal domains. The PBI cores are organized with the transition dipole moments parallel to the columnar axis, which is an unprecedented structural organization in π‐conjugated columnar liquid crystals. Middle and wide‐angle X‐ray analyses reveal a helical structure consisting of three self‐assembled hydrogen‐bonded PBI strands that constitute a single column of the columnar hexagonal phase. This remarkable assembly mode for columnar liquid crystals may afford new anisotropic LC materials for applications in photonics.  相似文献   

11.
Amphiphilic discotic molecules with hydrophilic side branches consisting of hexaphenyl hexa-peri-hexabenzocoronene and hexabiphenyl hexa-peri-hexabiphenylcoronene as the aromatic core and hexa-substituted oligoethers as the branched peripheral chains have been synthesized, and their microstructure has been characterized. The discotic molecules based on dibranched oligoether side chains have been observed to self-organize into a well-ordered hexagonal columnar structure within liquid crystalline phases, which possessed an exceptionally high thermal stability and an unusually wide temperature range over >300 degrees C. We suggest that a combination of the large lateral dimensions of the rigid cores and disordered structure of the oxygen-containing branches tails is a driving force to the formation of a highly ordered columnar structure in the bulk state with enhanced molecular segregation. In contrast to the thermotropic phase behavior that favors the formation of highly ordered columnar aggregates through a strong stacking interaction, the hexabenzocoronene cores are packed in a face-on arrangement at the air/water interface and on solid surfaces with surface domains composed of an array of 7 x 7 molecules. We suggest a crablike molecular conformation and cluster-segregated monolayers with 6-fold symmetry and unusual face-on packing on a solid surface. Preliminary spectroscopic studies in the bulk state have shown that the molecules based on a hexaaromatic-substituted core may serve as functional supramolecular materials with high energy transfer characteristic within the columns due to near-perfect columnar ordering, which is unchanged over a wide temperature range. We believe that an absence of the crystallization phenomenon of side-branched oligoether chains is critical for the formation of long-range columnar ordering with strong intracolumnar correlation of conjugated disks important for high carrier mobility.  相似文献   

12.
A novel mesoscopic simulation method is adopted to study the ordered packing of the anisotropic disklike particles with a soft repulsive interaction, which possesses a modified anisotropic conservative force type used in dissipative particle dynamics. We examine the influence of the shape of the particles, the angular width of the repulsion, and the strength of the repulsion on the packing structures. Specifically, an ordered hexagonal columnar structure is obtained in our simulations. Our study demonstrates that an anisotropic repulsive potential between soft discoidal particles is sufficient to produce a relatively ordered hexagonal columnar structure.  相似文献   

13.
A diketopyrrolopyrrole (DPP) dye self‐assembles via a unique hydrogen‐bonding motif into an unprecedented columnar liquid‐crystalline (LC) structure. X‐ray and polarized FTIR experiments reveal that the DPPs organize into a one‐dimensional assembly with the chromophores oriented parallel to the columnar axis. This columnar structure is composed of two π–π‐stacked DPP dimers with mirror‐image configurations that stack alternately through quadruple hydrogen bonding by 90° rotation. This exotic packing is dictated by the complementarity between H‐bonds and the steric demands of the wedge‐shaped groups attached at the core. This novel LC supramolecular material opens a new avenue of research on DPP dye assemblies with photofunctional properties tailored by H‐bonding networks.  相似文献   

14.
The columnar mesophases of two series of hexacatenar palladium(II) mesogens have been studied in detail by a combination of X-ray diffraction on aligned and unaligned samples and dilatometry. The results of these studies, combined with the results of two single crystal structure determinations, have allowed a model of the molecular arrangement in the columnar phases to be proposed. This model differs in detail from that generally accepted for the arrangement of polycatenar mesogens in columnar phases, and a new model is proposed which accounts for both new and existing data.  相似文献   

15.
A new series of liquid crystalline poly(amidoamine) (PAMAM) dendrimers is described. These dendrimers are made by attaching to the 0-, 1-, 2-, 3-, and 4-generation of PAMAM-terminal promesogenic units that carry two decyloxy chains in the 3- and 4-positions of their peripheral aromatic ring. X-ray diffraction studies show that all the compounds display a hexagonal columnar mesophase. A high density of aliphatic chains imposes a curved interface with the promesogenic units that forces the molecules to adopt a radial conformation, and therefore, the columnar structure. A model for the supramolecular organization of the different generations within the columnar mesophase is proposed based on the variation of some of the structural parameters.  相似文献   

16.
By controlling the mol ratios of reactants, novel calix[4]resorcinarene–triphenylene monomer, dimer and tetramer were designed and synthesised in yields of 50–60% via Click chemistry. Their structures were characterised by NMR and MS. Their liquid crystalline behaviours were studied by differential scanning calorimetry, polarising optical microscopy and X-ray diffraction analysis. The more triphenylene units on calix[4]resorcinarene resulted in the wider temperature scopes of mesophase and higher phase transition temperatures. The monomer 6 and dimer 7 showed the mixed columnar mesophase with hexagonal columnar structure and disordered lamellar columnar structure, and compound 8 possessed only disordered lamellar columnar mesophase. These research results suggest that calix[4]resorcinarene was a good platform to construct columnar liquid crystal and the mesomorphic properties were greatly influenced by the substituted numbers of mesogen units on calix skeleton.  相似文献   

17.
We have prepared two types of one-dimensional ion-conductive polymer films containing ion nanochannels that are both perpendicular and parallel to the film surface. These films have been obtained by photopolymerization of aligned columnar liquid crystals of a fan-shaped imidazolium salt having acrylate groups at the periphery. In the columnar structure, the ionic part self-assembles into the inner part of the column. The column is oriented macroscopically in two directions by different methods: orientation perpendicular to the modified surfaces of glass and indium tin oxide with 3-(aminopropyl)triethoxysilane and orientation parallel to a glass surface by mechanical shearing. Ionic conductivities have been measured for the films with columnar orientation vertical and parallel to the surface. Anisotropic ionic conductivities are observed for the oriented films fixed by photopolymerization. The ionic conductivities parallel to the columnar axis are higher than those perpendicular to the columnar axis because the lipophilic part functions as an ion-insulating part. The film with the columns oriented vertically to the surface shows an anisotropy of ionic conductivities higher than that of the film with the columns aligned parallel to the surface.  相似文献   

18.
The plasma spray-physical vapor deposition technique (PS-PVD) is used to deposit various types of ceramic coatings. Due to the low operating pressure and high enthalpy transfer to the feedstock, deposition from the vapor phase is very effective. The particular process conditions allow for the deposition of columnar microstructures when applying thermal barrier coatings (TBCs). These coatings show a high strain tolerance similar to those obtained by electron beam-physical vapor deposition (EB-PVD). But compared to EB-PVD, PS-PVD allows significantly reducing process time and costs. The application-related properties of PS-PVD TBCs have been investigated in earlier work, where the high potential of the process was described and where the good resistance to thermo-mechanical loading conditions was reported. But until now, the elementary mechanisms which govern the material deposition have not been fully understood and it is not clear, how the columnar structure is built up. Shadowing effects and diffusion processes are assumed to contribute to the formation of columnar microstructures in classical PVD processing routes. For such structures, crystallographic textures are characteristic. For PS-PVD, however, no crystallographic textures could initially be found using X-ray diffraction. In this work a more detailed TEM investigations and further XRD measurements of the columnar PS-PVD microstructure were performed. The smallest build units of the columnar TBC structure are referred to as sub-columns. The observed semi-single crystal structure of individual sub-columns was analyzed by means of diffraction experiments. The absence of texture in PS-PVD coatings is confirmed and elementary nucleation and growth mechanisms are discussed.  相似文献   

19.
合成了3种含有不同长度烷基链的苯并菲盘状液晶化合物; 通过1H NMR 和 MALDI-TOF MS对其结构进行了表征; 利用差示扫描量热法(DSC)、热台偏光显微镜(POM)和小角X射线散射实验(SAXS)对3种液晶化合物的自组装行为进行了研究. 结果表明, 烷基链的长度对苯并菲盘状液晶化合物自组装结构的影响显著. 柔性链为辛基的苯并菲盘状液晶化合物自组装成六方柱状液晶相; 柔性链为十二烷基的化合物自组装成倾斜柱状液晶相; 而柔性链为十六烷基的化合物则未形成液晶相.  相似文献   

20.
We have studied polycatenar compounds which exhibit hexagonal columnar mesophases. In the planar orientation of these mesophases, the elliptical diffusion of the dissolved dyes is visualized by taking several pictures of the sample. The diffusion ratio D// /D is deduced for these columnar mesophases. Furthermore, using a classical optical absorption technique, we present measurements of dye diffusion in the same mesophases. The diffusion constants are measured in two geometries, along and perpendicular to the columns. The diffusion anisotropy ratios are in agreement with those deduced from the ellipse axes. The structure of these new columnar mesophases exhibited by rod-like mesogens is compared with that of disk-like mesogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号