首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The elastic interaction between a string of cells and an individual cell on an elastic substrate is investigated numerically using the force-dipole model. This interaction is found to be of short range, and the cut-off distance is about 1.4 times of the length of the cell. The energy-minimization distance is about half the cellular length. The specific relationship between the cellular reorientation and the cellular position are obtained quantitatively. A critical distance is found, and the cellular orientation has an abrupt change at this transition point.  相似文献   

2.
InGaN/GaN-multiple-quantum-well-based light emitting diode (LED) nanopillar arrays with a diameter of approximately 200nm and a height of 700nm are fabricated by inductively coupled plasma etching using Ni self-assembled nanodots as etching mask. In comparison to the as-grown LED sample an enhancement by a factor of four of photoluminescence (PL) intensity is achieved after the fabrication of nanopillars, and a blue shift and a decrease of full width at half maximum of the PL peak are observed. The method of additional wet etching with different chemical solutions is used to remove the etch-induced damage. The result shows that the dilute HCl (HCl:H2O=1:1) treatment is the most effective. The PL intensity of nanopillar LEDs after such a treatment is about 3.5 times stronger than that before treatment.  相似文献   

3.
In the comparison of damage modifications, absorption measurement and energy dispersive x-ray analysis, the effect of vacuum on the laser-induced damage of anti-reflection coatings is analyzed. It is found that vacuum decreases the laser-induced damage threshold of the films. The low laser-induced damage threshold in vacuum environments as opposed to air environments is attributed to water absorption and the formation of the O/Si, O/Zr sub-stoichiometry in the course of laser irradiation.  相似文献   

4.
Infrared reflectance spectra have been widely used to measure layer thickness based either on calculation or on curve fitting, and two traditional methods for thickness determination have been studied. Considering the disadvantages of those two methods, we propose a new fitting model based on the fitting of the fringe order difference. In comparison with the measured results, the new fitting model shows its superiority not only for its stable and accurate results which have great agreement with the results from SEM, but also for its simple and quick fitting process.  相似文献   

5.
In this work, we have investigated the photoluminescence spectra of europium-doped zinc oxide crystallites prepared by a vibrating milled solid-state reaction method. X-ray diffraction, scanning electron microscopy, luminescence spectra and time-resolved spectra analysis were used to characterize the synthetic ZnO:Eu3+ powders. XRD results of the powders showed a typical wurtzite hexagonal crystal structure. A second phase occurred at 5 mol% Eu2O3-doped ZnO. The 5D0-7F1 (590 nm) and 5D0-7F2 (609 nm) emission characteristics of Eu3+ appeared after quenching with more than 1.5 mol% Eu2O3 doping. The Commission Internationale d’Eclairage (CIE) chromaticity coordinates of a ZnO:Eu3+ host excited at λex=467 nm revealed a red-shift phenomenon with increase in Eu3+ ion doping. The lifetime of the Eu3+ ion decreased as the doping concentration was increased from 1.5 to 10 mol%, and the time-resolved 5D07F2 transition presents a single-exponential decay behavior.  相似文献   

6.
The development of in situ diagnostics of the most important species and reactions in the plasma and/or on the surface during thin-film growth is one of the current topics in plasma-enhanced vapor deposition. In situ thin film diagnostic methods which could be used in plasma processing are restricted due to the presence of electrons and ions. The advantages and disadvantages of different applicable methods will be discussed. The spectroscopic in situ control of boron nitride film growth is presented as an example of surface modification in low-temperature, low-pressure plasma processing. The growth of cubic and hexagonal boron nitride is observed by polarized infrared reflection spectroscopy in absorption and ellipsometric configurations as well as by single-wavelength ellipsometry in the visible spectral range. Modeling of the experimental results gives detailed information on growth conditions and internal stress of the films. Received: 8 August 2000 / Accepted: 12 December 2000 / Published online: 3 April 2001  相似文献   

7.
We investigate the orientation of cells on substrates to find possible methods for controlling the cellular orientation. The force dipole model is employed in our modelling and simulation. The elastic interaction between cells as well as the elastic interaction between the cell and in-situ stress field in the substrate are found to be the two main physical mechanisms to control the cellular orientation. The former interaction dominates the cellular orientation when the in-situ stress is small, while the later dominates when the in-situ stress is large enough. Two cells tend to align perpendicularly on a free substrate, but the cellular orientation varies with the increasing in-situ stress. Two cells tendto align in parallel when the normal stress is large enough. Their direction is perpendicular to the extension stress direction or parallel to the compression stress direction. When the positive in-situ shear stress is large enough, the two cells tend to align at -45°. Based on this theoretical simulation, it is believed that the cellular orientation on substrates can be controlled by thein-situ stresses.  相似文献   

8.
We have addressed the problem of the uncertainty evaluation of phase values rendered by two popular algorithms: the N-bucket and the (N + 1)-bucket, both used to exploit temporal phase-stepping techniques. These algorithms, are mainly affected by errors in the calibration of the piezoelectric transducers used to achieve the phase shift, external vibration and optical noise. We have characterized and compared the influences of these errors on the phase uncertainty. We applied a Monte Carlo-based technique of uncertainty propagation that allowed us to consider in the uncertainty evaluation the simultaneous contributions of different error sources. The uncertainty evaluation was performed for phase values in the range (0, 2π), with different values of N and assuming that the phase was calculated from fringe patterns generated by using either Moiré interferometry or electronic speckle-pattern interferometry. We found that the uncertainties associated with the phases rendered by both algorithms are similar and they can be significantly affected by the optical noise and the value of N.  相似文献   

9.
Carbon nanotubes (CNTs) are potential strain sensors due to their excellent mechanical and spectral properties. A new theoretical model of a CNT strain sensor is obtained by applying the polarized Raman properties of CNTs, which calculates the synthetic contributions of Raman spectra from the CNTs in random directions. By using this theoretical model, the analytic relationship between planar strain components and the Raman shift increment of uniformly dispersed CNTs is obtained, which is applicable for accurately characterizing the strain in random directions on the surface of a measured microsystem.  相似文献   

10.
The cumulative effect of nanosecond multi-pulse irradiation on the dielectric coatings in atmosphere and vacuum environments was investigated. The laser-induced damage thresholds (LIDT) and the life span submitted to multi-pulse irradiation in two environments were compared. For both environments, we observe a decrease in laser-induced damage thresholds (LIDT) when shot number increase. However, the fatigue effect under repetitive shots under atmosphere environments and vacuum cases leads to different speeds of degradation. The correlative theory models were built to explain the experimental results.  相似文献   

11.
Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.  相似文献   

12.
Variability on Raman Shift to Stress Coefficient of Porous Silicon   总被引:1,自引:0,他引:1       下载免费PDF全文
Porous silicon film is a capillary-like medium, which is able to reveal different meso-elastic modulus with porosity. During the preparation of porous silicon samples, the capillary force is a non-classic force related to the liquid evaporation which directly influences the evolution of residual stress. In this study, a non-linear relation of Raman shift to stress coefficient and the porosity is obtained from the elastic modulus measured with nano-indentation by Bellet et al. [J. Appl. Phys. 60 (1996) 3772] Dynamic capillarity during the drying process of porous silicon is investigated using micro-Raman spectroscopy, and the results reveal that the residual stress resulted from the capillarity increased rapidly. Indeed, the dynamic capillarity has a close relationship with a great deal of micro-pore structures of the porous silicon.  相似文献   

13.
The laser-induced damage characteristics and adsorption effects of organic contamination molecules of two high reflectors (HR) prepared by electron beam evaporation (EB) and ion beam sputtering (IBS) method at 1064 nm is investigated in vacuum. It is found that EB films show the performance degradation of laser induced damages in vacuum while for IBS film, seems to have no this effect, in comparison with air environment. In addition, EB coatings also have the strong affinity with organic contamination molecules, in contrast of IBS films. The results reveal that ion beam sputtering (IBS) method seem to be one of the favorite film deposition techniques of the optical films used in vacuum and space environments.  相似文献   

14.
The optical constants of 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) films grown by organic molecular beam deposition on Si and GaAs substrates were determined in the spectral range from 300 nm to 1700 nm. All PTCDA layers deposited at room temperature with a low deposition rate of about 0.2 nm/min are uniaxial and strongly optically anisotropic. For the layers on Si a refractive index of 2.21 is derived in the substrate plane at 830 nm. The out-of-plane refractive index has a much lower value of 1.58. A similar anisotropy is observed for PTCDA layers on GaAs. The altogether lower refractive indices of 2.03 and 1.54, however, indicate a lower density of the films, which can be explained by the film structure. Received: 6 November 2000 / Accepted: 10 August 2001 / Published online: 17 October 2001  相似文献   

15.
NGR为肿瘤血管特异导向肽,将其与功能肽KV7连接构建成一导向功能多肽NGR-KV7;为研究该多肽与人肿瘤乳癌细胞的相互作用,应用核磁共振技术来探讨该多肽与细胞的作用位点和亲和性;通过1H NMR和T2弛豫谱的分析,推断该多肽分子与人乳癌细胞结合紧密,亲和程度高.  相似文献   

16.
Based on our previous investigation of optical tweezers with dark field illumination [Chin. Phys. Left. 25(2008)329] nanoparticles at large trap depth are better viewed in wide field and real time for a long time, but with poor forces. Here we present the mismatched tube length to compensate for spherical aberration of an oil-immersion objective in a glass-water interface in an optical tweezers system for manipulating nanoparticles. In this way, the critical power of stable trapping particles is measured at different trap depths. It is found that trap depth is enlarged for trapping nanoparticles and trapping forces are enhanced at large trap depth. According to the measurement, 70-nm particles are manipulated in three dimensions and observed clearly at large appropriate depth. This will expand applications of optical tweezers in a nanometre-scale colloidal system.  相似文献   

17.
A time-resolved THz tomography system for the incidence-angle-dependent three-dimensional characterization of layered structures is presented. The capabilities of the developed system are demonstrated on multi-layer ceramic samples used for solid oxide fuel cells (SOFC). Appropriate methods for determining unknown refractive indices are discussed. It is shown how the angle of incidence of a THz imaging system has a significant influence on measured signals. This fact can be exploited especially in Brewster-angle configurations to enhance the capabilities of any THz tomography system. Data evaluation algorithms are presented. Received: 8 June 2000 / Revised version: 13 September 2000 / Published online: 10 January 2001  相似文献   

18.
The photoluminescence and reflectance of porous silicon (PS) with and without hydrocarbon (CHx) deposition fabricated by plasma enhanced chemical vapour deposition (PECVD) technique have been investigated. The PS samples were then, annealed at temperatures between 200 and 800 °C. The influence of thermal annealing on optical properties of the hydrocarbon layer/porous silicon/silicon structure (CHx/PS/Si) was studied by means of photoluminescence (PL) measurements, reflectivity and ellipsometry spectroscopy. The composition of the PS surface was monitored by transmission Fourier transform infrared (FTIR) spectroscopy. Photoluminescence and reflectance measurements were carried out before and after annealing on the carbonized samples for wavelengths between 250 and 1200 nm. A reduction of the reflectance in the ultraviolet region of the spectrum was observed for the hydrocarbon deposited polished silicon samples but an opposite behaviour was found in the case of the CHx/PS ones. From the comparison of the photoluminescence and reflectance spectra, it was found that most of the contribution of the PL in the porous silicon came from its upper interface. The PL and reflectance spectra were found to be opposite to one another. Increasing the annealing temperature reduced the PL intensity and an increase in the ultraviolet reflectance was observed. These observations, consistent with a surface dominated emission process, suggest that the surface state of the PS is the principal determinant of the PL spectrum and the PL efficiency.  相似文献   

19.
Thin film composition spreads of Mg-Ni were deposited by co-sputtering on micromachined Si-cantilevers. The investigated compositions range from about Mg60Ni40 to about Mg80Ni20. Structural properties as well as mechanical stress before and after hydrogenation were measured with X-ray diffraction (XRD) and laser profilometry, respectively. The composition spreads were hydrogenated in a special pressure vessel, which allows measuring optically the hydrogen-induced deflection (stress-change) of 16 cantilevers as a function of hydrogen pressure and/or temperature. It was found that the hydrogen-induced stress is correlated with the composition and microstructure of the films. Highest hydrogen-induced stress changes were found for compositions close to the crystalline Mg2Ni phase.  相似文献   

20.
A method is proposed to recover the refractive index profile of graded waveguide from the effective indices by a cubic spline interpolation function. Numerical analysis of several typical index distributions show that the refractive index profile can be reconstructed closely to its exact profile by the presented interpolation model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号