首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A postbuckling analysis is presented for a shear-deformable anisotropic laminated cylindrical shell of finite length subjected to external pressure in thermal environments. The material properties are expressed as linear functions of temperature. The governing equations are based on Reddy’s higher-order shear-deformation shell theory with the von Karman-Donnell-type kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. The boundary-layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling region, and the initial geometric imperfections of the shell, is extended to the case of shear-deformable anisotropic laminated cylindrical shells under lateral or hydrostatic pressure in thermal environments. The singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The results obtained show that the variation in temperature, layer setting, and the geometric parameters of such shells have a significant influence on their buckling load and postbuckling behavior. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 43, No. 6, pp. 789–822, November–December, 2007.  相似文献   

2.
The problem on the elastoplastic deformation of reinforced shells of variable thickness under thermal and force loadings is formulated. A qualitative analysis of the problem is carried out and its linearization is indicated. Calculations of isotropic and metal composite cylindrical shells have shown that the load-carrying capacity of shell structures under elastoplastic deformations is several times (sometimes by an order of magnitude) higher than under purely elastic ones; the heating of shells with certain patterns of reinforcement sharply reduces their resistance to elastic deformations, but only slightly affects their resistance to elastoplastic ones; not always does the reinforcement in the directions of principal stresses and strains provide the greatest load-carrying capacity of a shell; there are reinforcement schemes that ensure practically the same resistance of shells at different types of their fastening. __________ Translated from Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 707–728, November–December, 2006.  相似文献   

3.
4.
An analysis of the current state of the geometrically non-linear theory of elasticity and of thin shells is presented in the case of small deformations but large displacements and rotations, the ratios of which are known as the ratios of the non-linear theory in the quadratic approximation. It is shown that they required specific revision and correction by virtue of the fact that, when they are used in the solution of problems, spurious bifurcation points appear. In view of this, consistent geometrically non-linear equations of the theory of thin shells of the Timoshenko type are constructed in the quadratic approximation which enable one to investigate in a correct formulation both flexural as well as previously unknown non-classical forms of loss of stability (FLS) of thin plates and shells, many of which are encountered in practice, primarily in structures made of composite materials with a low shear stiffness. In the case of rectilinear elastic whereas, which are subjected to the action of conservative external forces and are made of an orthotropic material, the three-dimensional equations of the theory of elasticity are reduced to one-dimensional equations by using the Timoshenko model. Two versions of the latter equations are derived. The first of these corresponds to the use of the consistent version of the three-dimensional, geometrically non-linear relations in an incomplete quadratic approximation and the Timoshenko model without taking account of the transverse stretching deformations, and the second corresponds to the use of the three- dimensional relations in the complete quadratic approximation and the Timoshenko model taking account of the transverse stretching deformations. A series of new non-classical problems of the stability of columns is formulated and their analytical solutions are found using the equations which have been derived with the aim of analyzing their richness of content. Among these are problems concerning the torsional, flexural and shear FLS of a column in the case of a longitudinal axial, bilateral transverse and trilateral compression, a flexural-torsional FLS in the case of pure bending and axial compression together with pure bending and, also, a flexural FLS of a column in the case of torsion and a flexural-torsional FLS under conditions of pure shear. Five FLS of a cylindrical shell under torsion are investigated using the linearized neutral equilibrium equations which have been constructed: 1) a torsional FLS where the solution corresponding to it has a zero variability of the functions in the peripheral direction, 2) a purely beam bending FLS that is possible in the case of long shells and is accompanied by the formation of a single half-wave along the length of the shell while preserving the initial circular form of the cross-section, 3) a classical bending FLS, which is accompanied by the formation of a small number of half-waves in the axial direction and a large number of half-waves in a peripheral direction which is true in the case of long shells, 4) a classical bending FLS which holds in the case of short and medium length shells (the third and fourth types of FLS have already been thoroughly studied in the case of isotropic cylindrical shells), 5) a non-classical FLS characterized by the formation of a large number of shallow depressions in the axial as well as in the peripheral directions; the critical value of the torsional moment corresponding to this FLS is practically independent of the relative thickness of the shell. It is established that the well-known equations of the geometrically non-linear theory of shells, which were formulated for the case of the mean flexure of a shell, do not enable one to reveal the first, second and fifth non-classical FLS.  相似文献   

5.
To validate earlier results for the case of arbitrary deformations and displacements in orthogonal curvilinear coordinates, kinematic and static relations of the non-linear theory of elasticity are set up which, in the limit of small deformations, lead, unlike the known relations, to correct and consistent relations. The same relations are also constructed for momentless shells of general form for the case of arbitrary displacements and deformations on the basis of which the problem of the static instability of a cylindrical shell with closed ends, made of a linearly elastic material and under conditions of an internal pressure (the problem of the inflation of a cylinder), is considered. It is shown that, in the case of momentless shells, the components of the true sheat stresses are symmetrical, unlike the three-dimensional case. All the above-mentioned relations are constructed for the loading of deformable bodies both by conservative external forces of constant directions and, also, by two types of “following” forces.  相似文献   

6.
基于壳体屈曲的边界层理论,本文给出有限长加筋圆柱壳在侧向外压和均布热荷载共同作用下的后屈曲分析。分析中同时考虑壳体非线性前屈曲变形,大挠度和初始几何缺陷的影响。肋条的处理采用“平均刚度”法。采用奇异摄动方法导得壳体屈曲载荷关系曲线和后屈曲平衡路径,并给出完善和非完善,纵向加筋或环向加筋圆柱壳数值算例。  相似文献   

7.
A stress state of a thin linearly elastic shell containing both isolated as well as continuously distributed dislocations and disclinations is considered using the classical Kirchhoff–Love model. A variational formulation of the problem of the equilibrium of both a multiply connected shell with Volterra dislocations as well as shells containing dislocations and disclinations distributed with a known density is given. The mathematical equivalence between the boundary-value problem of the stress state of a shell caused by distributed dislocations and disclinations and the boundary-value problem of the equilibrium of a shell under the action of specified distributed loads is established. A number of problems on dislocations and disclinations in a closed spherical shell is solved. The problem of infinitesimally deformations of a surface when there are distributed dislocations is formulated.  相似文献   

8.
球壳的环向剪切屈曲   总被引:2,自引:0,他引:2  
通过球壳微元初始屈曲的微分几何分析,推导出一组新的精确的屈曲分支方程,并且应用Galerkin变分法研究铰支球壳承受环向剪切力时的整体稳定性,构造了接近分支点变形状态的屈曲模式,首次求得了从扁球壳到半球壳大范围内的扭转屈曲临界特征值,临界荷载强度和临界应力.  相似文献   

9.
We develop a numerical-analytic method for calculating the thermoelastoplastic state of shallow shells of arbitrary curvature under conditions of heating by localized heat sources. For solving auxiliary problems that arise in applying the method of additional deformations, we use the Fourier integral transformation and integral representations of a solution. Detailed investigations were performed for shells of cylindrical, spherical, and ellipsoidal shapes. We establish the dependence of the distribution of thermal and residual stresses on the curvatures of a shell and on the mode of heating. We consider the limiting case where the construction has the shape of a plate.  相似文献   

10.
A variant of vibration theory for three-layered shells of revolution under axisymmetric loads is elaborated by applying independent kinematic and static hypotheses to each layer, with account of transverse normal and shear strains in the core. Based on the Reissner variational principle for dynamic processes, equations of nonlinear vibrations and natural boundary conditions are obtained. The numerical method proposed for solving initial boundary-value problems is based on the use of integrodifferential approach for constructing finite-difference schemes with respect to spatial and time coordinates. Numerical solutions are obtained for dynamic deformations of open three-layered spherical and ellipsoidal shells, over a wide range of geometric and physical parameters of the core, for different types of boundary conditions. A comparative analysis is given for the results of investigating the dynamic behavior of three-layered shells of revolution by the equations proposed and the shell equations of Timoshenko and Kirhhoff-Love type, with the use of unified hypotheses across the heterogeneous structure of shells.  相似文献   

11.
厚壁圆柱壳开孔应力集中问题的复变函数解法   总被引:1,自引:0,他引:1  
本文基于考虑横向剪切变形影响的厚壳理论建立了求解圆柱壳开孔应力集中问题的复变函数方法,得到了此种问题的一般解和满足任意形开孔边界条件的表达式·该应力集中问题可以简化为求解无穷代数方程组的问题·用复变函数方法可以规范地求解应力集中问题·文中给出了圆柱壳开小圆孔和椭圆孔时应力集中系数的数值结果·  相似文献   

12.
The equations of linear elasticity for rotationally symmetric deformations are expanded using a small parameter related to the thickness to radius of curvature ratio of the shell to obtain the classical thin shell equations of conical shells as a first approximation. These classical equations with variable coefficients permit further asymptotic expansions in the cases of steep as well as shallow cones, yielding systems of equations with constant coefficients. Solutions of these equations are used to compute the influence coefficients relating edge loads and edge displacements.  相似文献   

13.
The collapse and recovery loads have been experimentally determined for glass-reinforced-plastic shells compressed along the axis. Compressive force-displacement diagrams have been recorded, and it is shown that the experimental and theoretical diagrams qualitatively coincide. The collapse and recovery times have been ascertained. It is shown that glass-reinforced plastics can be used as an elastic material for investigating shell stability at large deformations.Mekhanika Polimerov, Vol. 3, No. 5, pp. 894–899, 1967  相似文献   

14.
应用轴对称旋转扁壳的非线性大挠度动力学方程,研究了波纹扁壳在均布载荷作用下的非线性受迫振动问题.采用格林函数方法,将扁壳的非线性偏微分方程组化为非线性积分微分方程组.再使用展开法求出格林函数,即将格林函数展开为特征函数的级数形式,积分微分方程就成为具有退化核的形式,从而容易得到关于时间的非线性常微分方程组.针对单模态振形,得到了谐和激励作用下的幅频响应.作为算例,研究了正弦波纹扁球壳的非线性受迫振动现象.该文的解答可供波纹壳的设计参考.  相似文献   

15.
This paper presents the application of the so-called Geometrical Elements Method (Lukasiewicz and Szyszkowski, 1974; Pogorelov, 1967) to the solution of elasto-plastic problems of shells. The approach is based on the observation that, during large deformations, the shell structure deforms in a nearly isometrical manner. Therefore, its deformed shape can be determined and analysed making use of the Gauss theorem according to which the Gaussian curvature of the isometrically deformed surface remains unchanged. The shell structure is subdivided into elements of two kinds: purely-isometrically deformed elements and quasi-isometrically deformed elements. The equilibrium of the whole structure is defined by the stationary value of the Hamiltonian function which requires the calculation of the strain energy in the elements. This can easily be obtained if we recognize that the isometrically deformed elements contain only bending energy. Using the method described, we are able to significantly the number of unknown values defining the shape of the deformed structure. The problem is reduced to the numerical evaluation of the minimum of a function of many variables. The elasto-plastic state of stress of the plastic material in the structure canbe determined by using the deformation theory of plasticity or the theory of plastic flow. Also, the strains and stresses in the plastic regions are the only functions of the assumed displacements field. The corresponding energy of the plastic deformation can easily be evaluated and added to the minimized functionals. For example, the elasto-plastic behaviour of a spherical shell under a concentrated load is studied. The solution obtained defines the large deformation behaviour and the motion of the plastic zones on the surface of the shell.  相似文献   

16.
Nonlinear three-dimensional problems of dynamic deformation, buckling, and posteritical behavior of composite shell structures under pulsed loads are analyzed. The structure is assumed to be made of rigidly joined plates and shells of revolution along the lines coinciding with the coordinate directions of the joined elements. Individual structural elements can be made of both composite and conventional isotropic materials. The kinematic model of deformation of the structural elements is based on Timoshenko-type hypotheses. This approach is oriented to the calculation of nonstationary deformation processes in composite structures under small deformations but large displacements and rotation angles, and is implemented in the context of a simplified version of the geometrically nonlinear theory of shells. The physical relations in the composite structural elements are based on the theory of effective moduli for individual layers or for the package as a whole, whereas in the metallic elements this is done in the framework of the theory of plastic flow. The equations of motion of a composite shell structure are derived based on the principle of virtual displacements with some additional conditions allowing for the joint operation of structural elements. To solve the initial boundary-value problem formulated, an efficient numerical method is developed based on the finite-difference discretization of variational equations of motion in space variables and an explicit second-order time-integration scheme. The permissible time-integration step is determined using Neumann's spectral criterion. The above method is especially efficient in calculating thin-walled shells, as well as in the case of local loads acting on the structural element, when the discretization grid has to be condensed in the zones of rapidly changing solutions in space variables. The results of analyzing the nonstationary deformation processes and critical loads are presented for composite and isotropic cylindrical shells reinforced with a set of discrete ribs in the case of pulsed axial compression and external pressure.Scientific Research Institute of Mechanics, Lobachevskii Nizhegorodsk State University, N. Novgorod, Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 35, No. 6, pp. 757–776, November–December, 1999.  相似文献   

17.
Conclusion The range of application of kinematically homogeneous models 2 and 3 for estimating the stress-strain state of a laminar shell is limited to the class of structures, whose stiffness characteristics of the individual layers differ by one-two orders of magnitude. In this case, the shell's subcritical deflection can be computed from simplest model 1 for relatively long shells (at least for L/R 2 in the cases under consideration). In other cases, the stressstrain state of a laminar shell should be evaluated on the basis of the fracture-line hypothesis (model 4). Consideration of transverse-reduction deformations of the shell's layers does not introduce significant corrections into the results of the computation.Translated from Mekhanika Kompozitnykh Materialov, No. 2, pp. 299–304, March–April, 1987.  相似文献   

18.
A problem of the dynamic process of their deformation is formulated in the momentless approximation for thin shells made of rubber-like elastomers under the action of a time-varying excess hydrostatic pressure. A system of non-linear equations of motion is set up for the case of arbitrary displacements and deformations in which the true deformation of the transverse compression of the shell, corresponding to the use of the modified Kirchhoff–Love model proposed earlier, and the coordinates of the points of the middle surface with respect to a fixed Cartesian system of coordinates, are taken as the required unknown functions. Physical relations connecting the components of the true internal stresses with the elongation factors and the extent of the shear strain are constructed using relations proposed earlier by Chernykh. A finite-difference method is developed for solving the initial-boundary value problem and, on the basis of this, the dynamic process of the inflation of shells of revolution at different rates of pressure increase is investigated and the unstable stages of their deformation are established with a determination of the corresponding limiting (critical) pressure value. After this value has been reached, a further increase in the deformations occurs at decreasing values of the internal pressure.  相似文献   

19.
Geometrically non-linear and linearized equations in the theory of momentless shells are set up based on the kinematic relations in [Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005; 69(5): 861–81]. The use of these equations, unlike in the case of the well-known equations, enables one to avoid the occurrence of spurious bifurcation points in solving real problems. Non-classical problems of the stability of cylindrical shells under an external pressure, axial compression and torsion are considered, which can be formulated on the basis of the derived equations of the theory of momentless shells. Their exact analytical solutions are found and enable one to estimate the quality of the previously obtained relations [Paimushin VN, Shalashilin VI. Relations of the theory of deformations in the quadratic approximation and problems of constructing refined versions of the geometrically non-linear theory of laminar structural components. Prikl Mat Mekh 2005; 69(5): 861–81] and the richness of content of the equations which have been constructed compared with well-known equations in the mechanics of thin shells. It is established that the majority of the new forms of loss of stability of cylindrical shells which are revealed relate to a number of shear forms, the onset of which is possible before the flexural forms which have been well studied up to now, in the case of small values of the shear modulus of a shell material with a very highly pronounced anisotropy in its properties.  相似文献   

20.
The problem of buckling instability of cylindrical shells under axial compression is considered. The shells consist of cylindrical sections of smaller radius. The geometrical parameters of the shells are approximated by Fourier series on a discrete point set. A Timoshenko-type shell theory is used. The solution is obtained in the form of trigonometric series. It is shown that shells consisting of cylindrical sections have considerable advantages over circular ones. At a constant shell weight, the choice of suitable parameters of shell sections leads to a significant increase in the critical load. The composite shells considered possess higher efficiency indices in comparison with isotropic ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号