首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The propagation phenomenon of a detonation wave is particularly interesting, because the detonation wave is composed of a 3D shock wave system accompanied by a reaction front. Thus, the passage of a detonation wave draws cellular patterns on a soot-covered plate. The pressure and temperature behind the detonation wave are extremely high and may cause serious damages around the wave. Therefore, it is of great significance from a safety-engineering point of view to decay the detonation wave with a short distance from the origin. In the present study, experiments using high-speed schlieren photography are conducted in order to investigate the behaviors of the detonation wave diffracting from two slits. The detonation wave produced in a stoichiometric mixture of hydrogen and oxygen is propagated through the slits, and the behaviors behind the slit-plate are investigated experimentally. When a detonation wave diffracts from the slits, a shock wave is decoupled with a reaction front. Since the two shock waves propagate from the slits interact with each other at the center behind the plate, the detonation wave is reinitiated by generating a hot-spot sufficient to cause local explosions. Furthermore, it is clarified that the shock wave reflected from a tube-wall is also capable of reinitiating the detonation wave. The reinitiation distance of the detonation wave from the slit-plate is correlated using a number of cells emerged from each slit.   相似文献   

2.
Experiments were conducted to investigate the DDT process of the oxyhydrogen gas in the rectangular detonation tube of 3 m long. The repeated obstacle was installed near the ignition plug and the effects of the obstacle on the DDT process were investigated. The behaviour of the combustion and detonation wave were visualized utilizing Imacon high-speed camera with the aid of Schlieren optics. As a result, DDT process was visualized, i.e. (i) multiple shock waves were induced by the expanding combustion wave, because the combustion flame played a role as a piston and compressed the unburned gases. (ii) The acceleration of the combustion wave was occurred and the distance between the shock wave and the combustion flame became shorter. (iii) Eventually, the local explosion was occurred and cause overdriven detonation wave to propagate at the velocity of about 3 kms−1. An abridged version of this paper was presented at the 15th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Boulder, Colorado, from July 30 to August 4, 1995  相似文献   

3.
The influence of CF3Br, CF2HBr, CF2HCl and CF3H on a benchmark mixture composed of stoichiometric H2−CO−O2−Ar is experimentally investigated. Several ratios hydrogen/carbon monoxide are studied. For each benchmark mixture, the initial pressure is adjusted in such a way that the detonation cell sizes are quasi identical. The effect of the additives on the detonation velocity and the detonation cellular structure is analyzed. The experiments show that CF3Br is the best inhibitor and CF2HBr might be substituted for CF3Br. CF3H does not inhibit the detonation wave. Simple chemical kinetics analysis gives us a better understanding of the inhibiting and promoting effect of the halocarbons. An abridged version of this paper was presented at the 15th Int. Colloquium on the Dynamics of Explosions and Reactive Systems at Boulder, Colorado, from July 30 to August 4, 1995  相似文献   

4.
A simplified theoretic method and numerical simulations were carried out to investigate the characterization of propagation of transverse shock wave at wedge supported oblique detonation wave.After solution validation,a criterion which is associated with the ratio Φ (u 2 /u CJ) of existence or inexistence of the transverse shock wave at the region of the primary triple was deduced systematically by 38 cases.It is observed that for abrupt oblique shock wave (OSW)/oblique detonation wave (ODW) transition,a transverse shock wave is generated at the region of the primary triple when Φ < 1,however,such a transverse shock wave does not take place for the smooth OSW/ODW transition when Φ > 1.The parameter Φ can be expressed as the Mach number behind the ODW front for stable CJ detonation.When 0.9 < Φ < 1.0,the reflected shock wave can pass across the contact discontinuity and interact with transverse waves which are originating from the ODW front.When 0.8 < Φ < 0.9,the reflected shock wave can not pass across the contact discontinuity and only reflects at the contact discontinuity.The condition (0.8 < Φ < 0.9) agrees well with the ratio (D ave /D CJ) in the critical detonation.  相似文献   

5.
The mitigating effect of a water wall on the generation and propagation of blast waves of a nearby explosive has been investigated using a numerical approach. A multimaterial Eulerian finite element technique is used to study the influence of the design parameters, such as the water-to-explosive weight ratio, the water wall thickness, the air-gap and the cover area ratio of water on the effectiveness of the water mitigation concept. In the computational model, the detonation gases are modelled with the standard Jones–Wilkins–Lee (JWL) equation of state. Water, on the other hand, is treated as a compressible fluid with the Mie–Gruneisen equation of state model. The validity of the computational model is checked against a limited amount of available experimental data, and the influence of mesh sizes on the convergence of results is also discussed. From the results of the extensive numerical experiments, it is deduced that firstly, the presence of an air-gap reduces the effectiveness of the water mitigator. Secondly, the higher the water-to-explosive weight ratio, the more significant is the reduction in peak pressure of the explosion. Typically, water-to-explosive weight ratios in the range of 1–3 are found to be most practical. PACS 47.40.-x; 47.40.Nm; 02.60.Cb This paper was based on work that was presented at the 19th Interna-tional Colloquium on the Dynamics of Explosions and Reactive Sys-tems, Hakone, Japan, July 27 - August 1, 2003  相似文献   

6.
Abstract. A two dimensional numerical simulation has been performed to study reflection processes of detonation waves on a wedge. The numerical scheme adopted is the flux corrected transport scheme and a two-step chemical reaction is assumed for a stoichiometric oxyhydrogen mixture diluted with argon. Transverse wave structures of the detonation are produced by artificial disturbances situated in front of a one-dimensional Chapman-Jouguet detonation wave. Numerical grids are generated by solving a Laplace equation. Results show that in the case where Mach reflection occurs, the cells in the Mach stem are smaller than those in the incident wave and are distorted in shape. There is also an initiating stage during which the cells in the Mach stem are created. The critical angle beyond which Mach reflection cannot occur is discussed. Received 15 October 1999 / Accepted 27 March 2000  相似文献   

7.
Effect of reflection type on detonation initiation at shock-wave focusing   总被引:12,自引:0,他引:12  
Abstract. From practical and theoretical standpoints, the initiation of combustion in gaseous media due to the shock waves focusing process at various reflectors is a subject of much current interest. The complex gas flowfield coupled with chemical kinetics provides a wide spectrum of possible regimes of combustion, such as fast flames, deflagration, detonation etc. Shock wave reflection at concave surfaces or wedges causes converging of the flow and produces local zones with extremely high pressures and temperatures. The present work deals with the initiation of detonation due to shock waves focusing at parabolic and wedge reflectors. Particular attention has been given to the determination of the critical values of the incident shock wave (ISW) Mach number, parameters of the combustible mixture, and geometrical sizes of reflector at which different combustion regimes could be generated. Received 30 August 1999 / Accepted 23 February 2000  相似文献   

8.
We have investigated the evolution of cellular detonation-wave structure as a gaseous detonation travels along a round tube and measured cell lengths as a function of the initial pressure of the gas. We have tested acetylene-containing combustible gas mixtures with different degrees of regularity. Along with the smoked-foil technique, an emission method has been used to the measure current and average values of the detonation cell length. The method is based on the detection of an emission spectrum behind the detonation front in the spectral range corresponding to local gas temperatures that are much higher than those for the Chapman-Jouguet equilibrium condition. This technique provides quasi-continuous cell-length measurements along the normal to the detonation front over the length of several factors of ten times the tube. Our study has experimentally identified the steady states of detonation structure in round tubes, referred to here as the single detonation modes. When the state of a single mode is fully established, then both the flow structure and the energy release at detonation front develop strictly periodically along the tube at a constant frequency inversely proportional to the cell length of the mixture. The mixture regularity has had no influence on the occurrence of the detonation mode, which is defined by the value of initial pressure or the total energy release of the mixture. Outside of the pressure range where a detonation mode was most likely to occur, the detonation front is unstable and may exhibit an irregular cellular pattern. Monitoring the evolution of cells over a long distance revealed that the local gas emissivity, which is time dependent and corresponds to axial pulsations of the detonation structure, has the appearance of a superposition of separate harmonics describing the states of emissivity oscillations and cell structure of single detonation modes. Received 18 October 1999 / Accepted 10 June 2001  相似文献   

9.
A study on jet initiation of detonation using multiple tubes   总被引:1,自引:0,他引:1  
K. Ishii  T. Tanaka 《Shock Waves》2005,14(4):273-281
A detonator consisting of a dense bundle of small-diameter tubes (4.4–19 mm) is tested experimentally using stoichiometric mixtures of hydrogen–oxygen and hydrogen–air. Tests are conducted in a 5,200-mm long detonation tube fitted with a schlieren photograph section and smoked foil to record the deflagration to detonation (DDT) transition. It is confirmed that the flame jet emanating from the tube assembly causes detonation initiation immediately downstream of the detonator, with little dependence on the size of the detonation tube. For the fuel–air mixture, the insertion of Shchelkin spirals into each of the smaller tubes enhances the development of the turbulent flame jet, leading to a shorter DDT distance. Multi-point spark ignition is also shown to provide a further reduction in the DDT distance compared to single-point ignition. PACS 47.40.-x; 47.40.Nm; 47.70.Fw; 82.40.-g; 82.40.Fp  相似文献   

10.
In safety engineering, one position of interest inside heterogeneous systems of the type liquid–gas is the contact surface between these two phases. Under certain conditions, e.g. shock wave impact, phenomena can take place at this position that can have a significant influence on the explosion behavior of the system. In this work an investigation is presented about the existence of such phenomena on the surface of liquid cyclohexane with or without the existence of oxygen containing bubbles. The observations have been performed during the time before, as well as after, a detonation wave reflection on that surface. High-speed pressure and optical measurements have been applied. Apart from the experimental observations, also a theoretical analysis and discussion is presented in this contribution, which contains the comparison between calculated and experimental values.  相似文献   

11.
A series of experiments supported by numerical simulations are reported on the interaction between a planar incident shock and a single obstacle. The test mixtures used were stoichiometric hydrogen and oxygen diluted with either argon or nitrogen at sub-atmospheric pressures. The main aim of the study was to determine the conditions under which a reflected detonation was generated. Observed critical conditions are compared with a simple predictive criterion based on the ratio of auto-ignition delay time behind an ideal reflected shock to the acoustic transit time across the face of the obstacle. Received 7 December 2001 / Accepted 3 March 2002 Published online 8 July 2002  相似文献   

12.
Since much of the early work on the concepts on which ram accelerators are based dates back to the 1960s, although many of these are still being actively pursued, it is difficult to formulate a completely logical approach. This situation is compounded by the use of presently unacceptable treatments of unidimensional detonations in the early work and unfortunately extended to some of the more modern treatments. My approach has been to start by dealing with the early work and recent work impinging upon it, then to re-emphasise recent work on detonations, particularly that dealing with the influence of changes in confinement on quenching and re-initiation of detonations. However, some knowledge of this is inferred in suggestions made in Part 2 for possible improvements in the techniques. Latter sections cover the development of the ram accelerator, the use of various types of projectiles, developments in experimental techniques and finally on areas in space flight where the results from ram accelerators might be utilised. Received 14 January 1999 / Accepted 16 June 1999  相似文献   

13.
A phenomenon of detonation transmission from one gaseous mixture (donor) to another of lower sensitivity (acceptor) was studied experimentally and numerically. The objective was to study effects of a donor mixture length and acceptor mixture sensitivity on the possibility of detonation transmission. Experiments were carried out in detonation tube 9.5–12 m long and 174 mm id. Three types of donor mixtures were used in the driver: stoichiometric acetylene/air, stoichiometric hydrogen/air, and 20% of hydrogen/air. Air mixtures with 14–29.6% of hydrogen were used as acceptors. Driver length varied from 0.17 to 5.6 m. Detonation transmission was studied for an abrupt opening of interface between two mixtures. Series of 1D and 2D calculations were made to simulate the problem numerically. Both, results of experiments and calculations revealed a set of parameters that effect transmission process. Critical conditions were determined as minimum driver length expressed in terms of characteristic chemical reaction length scales of acceptor mixture. They were shown to depend on differences in reaction rates and energy contents of donor and acceptor mixture. Received 6 January 1997 / Accepted 20 March 1997  相似文献   

14.
A two-dimensional numerical simulation has been performed to study the interaction of a gaseous detonation wave with obliquely inclined surfaces in a variable cross-sectional chamber. The weighted essentially non-oscillatory (WENO) numerical scheme with a relatively low resolution grid is employed. A detailed elementary chemical reaction model with 9 species and 19 elementary reactions is used for a stoichiometric oxy-hydrogen mixture diluted with argon. In this work, we study the effect of area expansion and contraction on the main/gross features of the detonation cellular structures in the presence of detonation reflection, diffraction and localized explosion. The result shows that there exists a transition region as the detonation wave propagates through the converging/diverging chamber. Within the transition region, the initial regular detonation cells become distorted and irregular before they re-obtain their regularity. While the ultimate regular cell size and the length of the transition region are strongly affected by the converging/diverging angle, the width/length ratio of the cells is fairly independent of it. A localized explosion near the wall is found as the detonation wave propagates in the diverging chamber.   相似文献   

15.
Steady,oblique, detonation waves   总被引:1,自引:0,他引:1  
Normal and oblique, steady planar detonation waves have been theoretically and computationally examined using the Zeldovich, von Neumann, Döring model. Combustion is between a methane/hydrogen mixture and dry air assuming, first, complete combustion, then an equilibrium solution. Prescribed parameters are the upstream values for the pressure, temperature, and Mach number, the fuel/air equivalence ratio, a hydrogen/methane ratio, and the detonation wave angle. For a given upstream state, the angle varies from its normal wave value in increments of 10 o to non-integer wave angles that correspond to the Chapman-Jouguet state for complete combustion and for an equilibrium solution. For each solution, detailed results are provided for the upstream state, the state just downstream of the shock, and the two downstream states. Over 340 solutions in a report (Emanuel and Tuckness 2002) are provided, thereby establishing, for the first time, comprehensive tables that can be used to provide quick estimates, establish trends, and check CFD results. This paper describes the basis for the model, briefly outlines the analytical and numerical method, and discusses several insights.  相似文献   

16.
Abstract. The results of an experimental study of DDT in mixtures with regular and irregular detonation cellular structures are presented. Experiments were carried out in a tube 174 mm i. d. with obstacles (blockage ratios were 0.1, 0.3, and 0.6). Mixtures used were hydrogen–air and stoichiometric hydrogen–oxygen diluted with , Ar, and He. The critical conditions for DDT are shown to depend on the regularity of the cellular structure of test mixtures. The critical values of the cell sizes in Ar- and He-diluted mixtures are shown to be significantly smaller than those in -diluted mixtures. This means that systems with a highly regular detonation cellular structure have far less capacity for undergoing DDT compared to irregular ones with the same values of detonation cell sizes. Received 18 November 1999 / Accepted 15 May 2000  相似文献   

17.
In this paper,detonation parameters of fuel cloud,such as propylene oxide(PO),isopropyl nitrate(IPN),hexane,90 # oil and decane were measured in a self-designed and constructed vertical shock tube.Results show that the detonation pressure and velocity of PO increase to a peak value and then decrease smoothly with increasing equivalence ratio.Several nitrate sensitizers were added into PO to make fuel mixtures,and test results indicated that the additives can efficiently enhance detonation velocity and pressure of fuel cloud and one type of additive n-propyl nitrate(NPN) played the best in the improvement.The critical initiation energy that directly initiated detonation of all the test liquid fuel clouds showed a U-shape curve relationship with equivalence ratios.The optimum concentration lies on the rich-fuel side(φ > 1).The critical initiation energy is closely related to molecular structure and volatility of fuels.IPN and PO have similar critical values while that of alkanes are larger.Detonation cell sizes of PO were respectively investigated at 25 C,35 C and 50 C with smoked foil technique.The cell width shows a U-shape curve relationship with equivalence ratios at all temperatures.The minimal cell width also lies on the rich-fuel side(φ > 1).The cell width of PO vapor is slightly larger than that of PO cloud.Therefore,the detonation reaction of PO at normal temperature is controlled by gas phase reaction.  相似文献   

18.
The paper reports the results of experimental measurements of the reflection pressures close to spherical charges of TNT. These measurements were made using a pressure bar technique. Charge weights of up to 3.6 kg were used, with the reflecting plane in the range 25 to 300 mm from the charge surface.A possible wave interaction model is discussed, to account for the observed pressure profiles, and its qualitative correctness checked by means of numerical simulation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

19.
爆轰波碰撞的聚能效应   总被引:1,自引:0,他引:1  
利用两高爆速导爆索对称布置于药卷两侧,起爆后炸药爆轰波在对称线处汇聚碰撞,当碰撞角度达到一定值时,发生马赫反射,使爆轰压力成倍增加,形成高压、高能量密度区域的聚能效应。本文在爆轰波传播碰撞理论的基础上,通过炸药做功能力和猛度试验验证爆轰波碰撞的聚能效果。做功能力试验结果表明爆轰波碰撞能够增加炸药能量利用率;猛度试验结果表明采用对称起爆技术下的爆轰波碰撞能够改变爆轰波在特定方向上的扩散作用。试验结果与爆轰波入射角的几何关系表明,当高爆速起爆药条与主装药爆速比例在1.15倍以上时,爆轰波碰撞能够达到一定的聚能效果。  相似文献   

20.
A numerical study of the interaction of plane blast waves with a cylinder is presented. Computations are carried out for various blast-wave durations and comparisons are obtained with the corresponding results of planar shock-wave. Both inviscid and viscous results based on the solution of the Euler and Navier-Stokes equations are presented. The equations are solved by an adaptive-grid method and a second-order Godunov scheme. The shock wave diffraction over the cylinder is investigated by means of various contour plots, as well as, pressure and skin-friction histories. The study reveals that the blast-wave duration significantly influences the unsteady flow over the cylinder. The differences between the viscous and inviscid results are also discussed. Received 2 March 1996 / Accepted 28 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号