首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The vast majority of chiral compounds crystallize into racemic crystals. It has been predicted and was experimentally established as a rule that chiral molecules on surfaces are more easily separated into homochiral domains due to confinement into a plane and lower entropic contributions. We investigated the formation and stability of two-dimensional tartrate crystals on a Cu(110) surface for the racemic mixture for the first time by means of temperature-programmed desorption (TPD), low-energy electron diffraction (LEED), and X-ray photoelectron spectroscopy (XPS). At low coverage, a bitartrate species becomes separated into homochiral domains, while at high coverage a monotartrate species forms a racemic mixture. At the same coverage and lateral arrangement, the thermally induced autocatalytic decomposition reaction occurs for the monotartrate racemate at a lower temperature than for the pure enantiomers. The stereochemistry in this so-called "surface explosion" reaction is explained by a higher stability of the enantiopure lattice due to lateral hydrogen-bond formation. The higher stability of the enantiopure two-dimensional lattice is in contrast to the higher stability of racemic three-dimensional tartaric acid crystals but is consistent with the observation that homochirality is preferred in hydrogen-bonded self-assembled biomolecular structures.  相似文献   

2.
We have determined the structures of dense adlayers of glycine and alanine on the Cu(110) and Cu(100) surfaces using plane wave density functional theory. These calculations resolve several experimental controversies regarding these structures. Glycine exists on Cu(110) as a single adlayer structure, while on Cu(100) two distinct glycine adlayers coexist. The glycine structures serve as useful starting points for constructing alanine adlayer structures. We considered separately the adsorption of enantiopure alanine and racemic alanine on each surface. Adlayers of enantiopure alanine are found to be closely related to the adlayers observed for glycine. Racemic alanine adlayers on Cu(110) are structurally analogous to those observed for glycine on this surface and adopt a pseudo-racemate ordering. On Cu(100), in contrast to glycine, racemic alanine is found to adopt a single adlayer structure that is an ordered racemate. Spontaneous segregation of molecular enantiomers does not occur in racemic adsorbed mixtures on either surface. Consideration of the orientationally distinct domains that may exist for each adlayer on these surfaces provides important information for the interpretation of the adlayer domain boundaries that are commonly observed in scanning tunneling microscopy images of amino acid adlayers. Examining this set of amino acid adlayers provides useful insight into the range of subtle behaviors that can arise in these and related systems where chiral molecules form ordered adlayers on flat metal surfaces.  相似文献   

3.
Two-dimensional lattice structures formed by racemic tartaric acid on a single crystalline Cu(110) surface have been studied and compared with the enantiopure lattices. At low coverage, the doubly deprotonated bitartrate species is separated into two-dimensional conglomerates showing opposite enantiomorphism. At higher coverage, however, a singly deprotonated monotartrate species forms a heterochiral, racemic crystal lattice. While the enantioseparated bitartrate system undergoes decomposition at the same temperature as the enantiopure system, the racemic monotartrate lattice has a lower thermal stability than the enantiopure lattice of identical periodicity and surface density. At monolayer saturation coverage, the pure enantiomers form a denser lattice than the racemate. This is in contrast to the three-dimensional tartaric acid crystals, where the racemate crystallizes in a lattice of higher density, which is also more thermally stable than the enantiopure tartaric acid crystals.  相似文献   

4.
Cytosine was adsorbed onto a Cu(110) surface under UHV conditions. Annealing to 370 K resulted in the formation of a (6 x 6)gg low energy electron diffraction (LEED) pattern, even at submonolayer coverages. Examination of this structure with scanning tunneling microscopy (STM) revealed islands of zigzag chains at low coverages and large ordered domains at monolayer saturation. Further annealing to 480 K initiated a phase transition to a (6 x 2)gg structure observed both by LEED and STM. High resolution electron energy loss spectroscopy spectra for both overlayer structures exhibited mainly in-plane modes suggesting upright/tilted species on the surface. Based on the experimental data and supported by density functional theory calculations, a model is proposed for the (6 x 2)gg structure, which involves the formation of deprotonated hydrogen bridge-bonded cytosine dimers, adsorbed through the oxygen atoms.  相似文献   

5.
Induction of homochirality in achiral enantiomorphous monolayers   总被引:1,自引:0,他引:1  
We report the induction of homochirality in enantiomorphous layers of achiral succinic acid on a Cu(110) surface after doping with tartaric acid (TA) enantiomers. Succinic acid becomes chiral upon adsorption due to symmetry-breaking interactions with the Cu(110) surface. The doubly deprotonated bisuccinate forms mirror domains on the surface, which leads to a superposition of (11,-90) and (90,-11) patterns observed by low-energy electron diffraction (LEED). On average, however, the surface layer is racemic. An amount of 2 mol % of (R,R)- or (S,S)-tartaric acid in the monolayer, corresponding to an absolute coverage of 0.001 tartaric acid molecule per surface copper atom, is sufficient to make the LEED spots of one enantiomorphous lattice disappear. After thermally induced desorption of TA, the succinic acid lattice turns racemic again. In analogy to the "sergeants-and-soldiers" principle described for helical polymers, this effect is explained by a lateral cooperative interaction within the two-dimensional lattice.  相似文献   

6.
Establishing a molecular-level understanding of enantioselectivity and chiral resolution at the organic-inorganic interfaces is a key challenge in the field of heterogeneous catalysis. As a model system, we investigate the adsorption geometry of serine on Cu{110} using a combination of low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The chirality of enantiopure chemisorbed layers, where serine is in its deprotonated (anionic) state, is expressed at three levels: (i) the molecules form dimers whose orientation with respect to the substrate depends on the molecular chirality, (ii) dimers of L- and D-enantiomers aggregate into superstructures with chiral (-1 ?2; 4 0) lattices, respectively, which are mirror images of each other, and (iii) small islands have elongated shapes with the dominant direction depending on the chirality of the molecules. Dimer and superlattice formation can be explained in terms of intra- and interdimer bonds involving carboxylate, amino, and β-OH groups. The stability of the layers increases with the size of ordered islands. In racemic mixtures, we observe chiral resolution into small ordered enantiopure islands, which appears to be driven by the formation of homochiral dimer subunits and the directionality of interdimer hydrogen bonds. These islands show the same enantiospecific elongated shapes those as in low-coverage enantiopure layers.  相似文献   

7.
The adsorption of trimesic acid (TMA) on Cu(110) has been studied in the temperature range between 130 and 550 K and for coverages up to one monolayer. We combine scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), reflection absorption infrared spectroscopy (RAIRS), X-ray photoemission spectroscopy (XPS), and density functional theory (DFT) calculations to produce a detailed adsorption phase diagram for the TMA/Cu(110) system as a function of the molecular coverage and the substrate temperature. We identify a quite complex set of adsorption phases, which are determined by the interplay between the extent of deprotonation, the intermolecular bonding, and the overall energy minimization. For temperatures up to 280 K, TMA molecules are only partly deprotonated and form hydrogen-bonded structures, which locally exhibit organizational chirality. Above this threshold, the molecules deprotonate completely and form supramolecular metal-organic structures with Cu substrate adatoms. These structures exist in the form of single and double coordination chains, with the molecular coverage driving distinct phase transitions.  相似文献   

8.
The effect of sulfur on alkoxide formation and decomposition on the Ni(100) surface has been investigated with STM and LEED. At low coverage sulfur adsorbs into a p(2 x 2) structure, in agreement with LEED measurements and previous STM results. With increasing sulfur coverage, the p(2 x 2) structure saturates the surface and scattered domains of c(2 x 2) appear. Further increases in sulfur coverage affect increases in c(2 x 2) domain sizes; the state of the sulfur-covered surface up to 0.43 ML is characterized by p(2 x 2) and c(2 x 2) domains. STM measurements of the evolution of the sulfur-covered surface with D(2)S(g) adsorption are suggestive of sulfur nucleation and growth at multiple sites on the surface. Alkoxide formation on these surfaces was studied following exposure to ROH (R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and C(6)H(5)). The alkoxy surface intermediates adsorbed in p(2 x 2)-S vacancies and, in the case of phenoxy, between hollow sites. Agreement between the methoxy coverage determined by XPS and the fraction of the surface covered with p(2 x 2)-S, as determined by STM, suggests that the p(2 x 2) vacancies are the sites of methoxy adsorption, and hence the active sites for selective poisoning.  相似文献   

9.
High resolution spot profile analysis low energy electron diffraction (SPA-LEED) and variable temperature scanning tunneling microscopy (STM) have been used to observe the growth of Pb on the Pb/Si(111)-α√3×√3 phase, which is driven by quantum size effects (QSE). A change in the rotation of the Pb grown islands with respect to the Si substrate has been observed with increasing coverage θ. At lower coverage, separated two-step islands are grown and are aligned with the [110] axis of the substrate. With increasing coverage above 1.5 ML, of the islands coalesce and form a bilayer, with additional islands grown on top. The preferred Pb island orientation changes to 5.6° with respect to the [110] direction. These changes at the metal/semiconductor buried interface are obtained both with SPA LEED and STM as changes to the period of the Moire pattern. The method of analysis of the corrugation period and rotation angle of the Moire pattern measured with diffraction and STM can be applied to obtain the structure of buried metal/substrate interfaces in other epitaxial systems.  相似文献   

10.
The chemisorption of methyl and phenyl iodide has been studied at Cu(110) and Ag(111) surfaces at 290 K with STM and XPS. At both surfaces dissociative adsorption of both molecules leads to chemisorbed iodine, with the STM showing c(2 x 2) and (square root 3 x square root 3)R30 structures at the Cu(110) and Ag(111) surfaces, respectively. At the Cu(110) surface a comparison of coexisting c(2 x 2) I(a) and p(2 x 1) O(a) domains shows the iodine adatoms to be chemisorbed in hollow sites with evidence at low coverage for diffusion in the (110) direction. In the case of methyl iodide no carbon adsorption is observed at either the silver or the copper surfaces, but chemisorbed phenyl groups are imaged at the Cu(110) surface after exposure to phenyl iodide. The STM images show the phenyl groups as bright features approximately 0.7 nm in diameter and 0.11 nm above the iodine adlayer, reaching a maximum surface concentration after approximately 6 Langmuir exposure. However, the phenyl coverage decreases with subsequent exposures to PhI and is negligible by approximately 1000 L exposure, consistent with the formation and desorption of biphenyl. The adsorbed phenyls are located above hollow sites in the substrate, they are stabilized at the top and bottom of step edges and in paired chains (1.1 nm apart) on the terraces with a regular interphenyl spacing within the chains of 1.0 nm in the (110) direction. The interphenyl ring spacing and diffusion of individual phenyls from within the chains shows that the chains do not consist of biphenyl species but may be a precursor to their formation. Although the XPS data shows carbon present at the Ag(111) surface after exposure to PhI, no features attributable to phenyl groups were observed by STM.  相似文献   

11.
The imaging and manipulation capabilities of the scanning tunnelling microscope (STM) render possible a novel nanoscale chemistry based on experiments with single molecules. Herein, we address several aspects of a nanoscale stereochemistry using the STM. As an example, we investigate 1‐nitronaphthalene on Au(111). 1‐Nitronaphthalene becomes chiral upon planar adsorption on the metal surface. High‐resolution STM images reflect the asymmetric electronic structure of the molecules and allow for the determination of the absolute configuration of any individual molecule within complex molecular structures. At medium coverage, spontaneous breaking of the chiral symmetry results in the formation of homochiral conglomerates, while at high coverage racemic structures prevail. Finally, the tip of the STM is used to separate “supramolecule‐by‐supramolecule” a racemic mixture of chiral 1‐nitronaphthalene aggregates into the enantiopure compounds.  相似文献   

12.
This article reviews structural details from tensor LEED analyses for three oxygen on copper surfaces, specifically those designated Cu(110)-(2x1)-O, Cu(110)-c(6x2)-O and Cu(100)-(2√2x√2)R45 °-O. Certain common features are identified and discussed. It appears that these particular structures receive some stability from being able to fit O---Cu---O building blocks, of the sort needed to construct bulk Cu2O, on to the Cu substrates. Each O atom maintains a four-coordinate status, while simultaneously allowing reasonable O---Cu bond lengths. Comparisons are made with other related systems, namely O at Ni and N at Cu surfaces.  相似文献   

13.
Ultrathin ordered titanium oxide films on Pt(111) surface are prepared by reactive evaporation of Ti in oxygen. By varying the Ti dose and the annealing conditions (i.e., temperature and oxygen pressure), six different long-range ordered phases are obtained. They are characterized by means of low-energy electron diffraction (LEED), X-ray photoemission spectroscopy (XPS), and scanning tunneling microscopy (STM). By careful optimization of the preparative parameters, we find conditions where predominantly single phases of TiO(x), revealing distinct LEED pattern and STM images, are produced. XPS binding energy and photoelectron diffraction (XPD) data indicate that all the phases, except one (the stoichiometric rect-TiO2), are one monolayer thick and composed of a Ti-O bilayer with interfacial Ti. Atomically resolved STM images confirm that these TiO(x) phases wet the Pt surface, in contrast to rect-TiO2. This indicates their interface stabilization. At a low Ti dose (0.4 monolayer equivalents, MLE), an incommensurate kagomé-like low-density phase (k-TiO(x) phase) is observed where hexagons are sharing their vertexes. At a higher Ti dose (0.8 MLE), two denser phases are found, both characterized by a zigzag motif (z- and z'-TiO(x) phases), but with distinct rectangular unit cells. Among them, z'-TiO(x), which is obtained by annealing in ultrahigh vacuum (UHV), shows a larger unit cell. When the postannealing of the 0.8 MLE deposit is carried out at high temperatures and high oxygen partial pressures, the incommensurate nonwetting, fully oxidized rect-TiO2 is found The symmetry and lattice dimensions are almost identical with rect-VO2, observed in the system VO(x)/Pd(111). At a higher coverage (1.2 MLE), two commensurate hexagonal phases are formed, namely the w- [(square root(43) x square root(43)) R 7.6 degrees] and w'-TiO(x) phase [(7 x 7) R 21.8 degrees]. They show wagon-wheel-like structures and have slightly different lattice dimensions. Larger Ti deposits produce TiO2 nanoclusters on top of the different monolayer films, as supported both by XPS and STM data. Besides the formation of TiO(x) surfaces phases, wormlike features are found on the bare parts of the substrate by STM. We suggest that these structures, probably multilayer disordered TiO2, represent growth precursors of the ordered phases. Our results on the different nanostructures are compared with literature data on similar systems, e.g., VO(x)/Pd(111), VO(x)/Rh(111), TiO(x)/Pd(111), TiO(x)/Pt(111), and TiO(x)/Ru(0001). Similar and distinct features are observed in the TiO(x)/Pt(111) case, which may be related to the different chemical natures of the overlayer and of the substrate.  相似文献   

14.
Methyl radicals are generated by pyrolysis of azomethane, and the condition for achieving neat adsorption on Cu(110) is described for studying their chemisorption and reaction characteristics. The radical-surface system is examined by X-ray photoemission spectroscopy, ultraviolet photoemission spectroscopy, temperature-programmed desorption, low-energy electron diffraction (LEED), and high-resolution electron energy loss spectroscopy under ultrahigh vacuum conditions. It is observed that a small fraction of impinging CH3 radicals decompose into methylene possibly on surface defect sites. This type of CH2 radical has no apparent effect on CH3(ads) surface chemistry initiated by dehydrogenation to form active CH2(ads) followed by chain reactions to yield high-mass alkyl products. All thermal desorption products, such as H2, CH4, C2H4, C2H6, and C3H6, are detected with a single desorption peak near 475 K. The product yields increase with surface coverage until saturation corresponding to 0.50 monolayer of CH3(ads). The mass distribution is, however, invariant with initial CH3(ads) coverage, and all desorbed species exhibit first-order reaction kinetics. LEED measurement reveals a c(2 x 2) adsorbate structure independent of the amount of gaseous exposure. This strongly suggests that the radicals aggregate into close-packed two-dimensional islands at any exposure. The islanding behavior can be correlated with the reaction kinetics and is deemed to be essential for the chain propagation reactions. Some relevant aspects of the CH3/Cu(111) system are also presented. The new results are compared with those of prior studies employing methyl halides as radical sources. Major differences are found in the product distribution and desorption kinetics, and these are attributed to the influence of surface halogen atoms present in those earlier investigations.  相似文献   

15.
The bonding and self-assembly of a chirally organized monolayer of alanine on the Cu(110) surface has been investigated using reflection-absorption infrared spectroscopy, low-energy electron diffraction (LEED), and scanning tunneling microscopy (STM). This multitechnique approach has enabled an in-depth understanding of the hierarchy of chirality transfer: from a single adsorbed molecule, to size-defined chiral clusters, and then to an overall chiral assembly. The data have indicated that the alanine is in its anionic form, bound to the copper surface through the oxygens of the ionized carboxylate group and the nitrogen of the neutral amino group. Importantly, the methyl group is held away from the surface, resulting in direct chirality transfer into the footprint of the adsorbed alanine molecules, with the local adsorption motif for S-alanine being the mirror image of that created for R-alanine. STM has shown that S-alanine molecules self-organize to form size-defined chiral clusters of six or eight molecules at the surface, interspersed with chiral channels of bare metal. Together, these clusters and channels further self-assemble into a chiral array with one unique chiral domain sustained across the entire surface. A similar chiral assembly, but with the mirror organization, has been observed for R-alanine. Structural models for the individual clusters are proposed, and in conjunction with LEED data, overall models for these chiral phases of both S- and R-alanine have been constructed. Overall, this adsorption system has been found to be both strongly chemisorbed and capable of extensive intermolecular H-bonding, causing stresses that lead not only to the chiral self-organization of molecules but also to a specific self-organization of the empty chiral channels and spaces that intersperse the structure which, in turn, chirally assemble across macroscopic length scales to give a surface with global organizational chirality.  相似文献   

16.
An interesting low coverage oxygen-induced reconstruction phase is observed on Ni(771), a regularly stepped surface with (110) terraces and (111) steps. At oxygen coverages of about 60% of that of the (2×1) reconstruction of the terraces, a periodicity of (6×1) is identified with LEED and STM. Structural units — consisting of three linear metal chains with distances of 2a1 and a1 , respectively — are separated by 3a1 and extend over twice the terrace width of the clean surface. The transition to the very stable (2×1) phase upon further oxygen uptake proceeds simply by a shift of a1 of one chain within each unit, so that all chains become separated by 2a1.  相似文献   

17.
Due to the large number of possible defects available to disorder the fcc metal (110) 2x1 missing row reconstruction, there is a particularly rich variety of possible disordered phases. The five distinct disordering scenarios that have been predicted for this reconstruction depend on the relative energy cost to generate the different defects that can form on this surface. Recent high resolution LEED measurements on the clean and alkali covered Pd(110) surfaces have explored a few of these phases. For clean Pd(110), a surface consisting of semi-ordered islands has been demonstrated to exist up to 950 K. The periodic island structure can be predicted by a simple model that includes step-step interactions and strain relaxation in the islands. Subsequent alkali adsorption destroys the island structure and forms the 2x1 missing row reconstruction. Diffraction results will be presented as a function of alkali coverage that show that the Pd(110)+K 2x1→1x1 transition is an example of deconstruction to the “even” flat phase. The existence of this intermediate phase has important implications to the growth of the missing row reconstruction and the range of the alkali-substrate interaction. In addition to these observations, higher potassium coverage data demonstrates that the Pd(110)+K work function minimum is correlated with a surface roughening transition.  相似文献   

18.
Density Functional Theory calculations have been used to predict the structures of dense glycine and alanine adlayers on Cu(3,1,17)(S). Facets of this chiral Cu surface result from adsorbate-induced surface reconstruction when glycine or alanine are adsorbed and annealed on Cu(100). We have calculated the surface energy changes associated with this surface reconstruction. Our results allow the enantiospecificity of this reconstruction following adsorption of enantiopure or racemic alanine on Cu(100) to be discussed. The overall stability of glycine and alanine adlayers on Cu(3,1,17)(S) arises from an interplay between the formation of chemical bonds with the Cu surface, deformations in the adsorbed molecules during adsorption, and intermolecular hydrogen bonds within the adlayer; none of these factors individually dominates.  相似文献   

19.
Growth, atomic structure and O2 partial pressure dependent phase transitions of Ni-O structures and thin NiO films on Pt(111) have been studied using scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED), and Auger electron spectroscopy (AES). In situ STM experiments were performed during film growth by reactive metal deposition at elevated temperatures (400-550 K) and variable O2 pressure. Depending on the substrate temperature, one-dimensional network-like Ni-O structures and islands with (7x1) and (4x2) reconstructions are formed during the initial stages of growth. These structures transform reversibly to a (2x2) reconstruction in a narrow O2 pressure range of 1.5-2x10(-6) mbar and can be monitored by in situ STM. Upon reduction of the O2 pressure to <10(-10) mbar pseudomorphic Ni monolayers are obtained. The defect-free ordering of Ni atoms on Pt(111) in a single stacking domain indicates an O-surfactant induced growth mode. The structural properties of the O2 pressure-dependent Ni-O phases are discussed in a simple model assuming NiO(001)-like atomic arrangements in the adsorbate overlayer. At higher coverage stable (111)-oriented NiO islands grow in a three-dimensional mode.  相似文献   

20.
The dependence of supramolecular structure on fractional molecular coverage has been investigated for acridine-9-carboxylic acid (ACA) and the C(60):ACA binary molecular system. The coverage-dependent phase diagram for ACA is first determined from room-temperature STM imaging. At low molecular coverages (theta < 0.4 ML, ML = monolayer), ACA forms a 2-D gas phase. Ordered ACA structures appear with increasing coverage: first a chain structure composed of ACA molecules linked by consecutive O-H...N hydrogen bonds (theta > 0.4 ML), then a dimer structure composed of ACA dimers linked by paired carboxyl-carboxyl hydrogen bonds (theta approximately equal to 1.0 ML). Structures of the C(60):ACA binary system depend on the coverage of predeposited ACA. At intermediate (0.4 ML approximately 0.8 ML) ACA coverages, C(60) deposition results in a hexagonal cooperative structure with the C(60) periodicity nearly 3 times that of the normal C(60) 2-D packing of 1 nm and exists in enantiopure domains. At higher ACA coverages, a C(60) quasi-chain structure is formed in which parallel C(60) chains are spaced by ACA dimer domains. The mechanistic role of the initial ACA phase in the formation of C(60):ACA supramolecular structures is described. Chemically intuitive molecular packing models are presented based on the observed STM images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号