首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dinuclear molecule of [(Me3SiCH2)Cl2Sn]2(CH2)3 adopts an extended conformation and features distorted tetrahedral tin centres, with the greatest distortion manifested in the C? Sn? C angles of approximately 128 °. The distortions are ascribed to the influence of intermolecular Sn···Cl interactions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
Smog chamber/Fourier transform infrared (FTIR) techniques were used to measure the kinetics of the reaction of n‐CH3(CH2)xCN (x = 0–3) with Cl atoms and OH radicals: k(CH3CN + Cl) = (1.04 ± 0.25) × 10−14, k(CH3CH2CN + Cl) = (9.20 ± 3.95) × 10−13, k(CH3(CH2)2CN + Cl) = (2.03 ± 0.23) × 10−11, k(CH3(CH2)3CN + Cl) = (6.70 ± 0.67) × 10−11, k(CH3CN + OH) = (4.07 ± 1.21) × 10−14, k(CH3CH2CN + OH) = (1.24 ± 0.27) × 10−13, k(CH3(CH2)2CN + OH) = (4.63 ± 0.99) × 10−13, and k(CH3(CH2)3CN + OH) = (1.58 ± 0.38) × 10−12 cm3 molecule−1 s−1 at a total pressure of 700 Torr of air or N2 diluents at 296 ± 2 K. The atmospheric oxidation of alkyl nitriles proceeds through hydrogen abstraction leading to several carbonyl containing primary oxidation products. HC(O)CN, NCC(O)OONO2, ClC(O)OONO2, and HCN were identified as the main oxidation products from CH3CN, whereas CH3CH2CN gives the products HC(O)CN, CH3C(O)CN, NCC(O)OONO2, and HCN. The oxidation of n‐CH3(CH2)xCN (x = 2–3) leads to a range of oxygenated primary products. Based on the measured OH radical rate constants, the atmospheric lifetimes of n‐CH3(CH2)xCN (x = 0–3) were estimated to be 284, 93, 25, and 7 days for x = 0,1, 2, and 3, respectively.  相似文献   

3.
The water soluble poly(ferrocenylsilane) polycation, poly(ferrocenyl(3‐ammoniumpropyl)methylsilane), was synthesized by transition metal‐catalyzed ring‐opening polymerization of the novel [1]ferrocenophane Fe(η‐C5H4)2SiCH3(CH2)3Cl and by subsequent side group modification. Amination of the chloropropyl moieties using potassium 1,1,3,3‐tetramethyldisilazide followed by acidic hydrolysis produced the polycation. The polycation was employed together with poly(sodium vinylsulfonate) in the electrostatic layer‐by‐layer self‐assembly process to form organometallic multilayers on quartz. The multilayer fabrication process was monitored using UV/Vis absorption spectroscopy and XPS.  相似文献   

4.
《Polyhedron》1987,6(7):1599-1601
The complex Re(CSiMe3)(CH2SiMe3)3Cl has been isolated as yellow crystals in low yield from the reaction of ReCl4(THF)2 with Me3SiCH2MgCl and characterised by X-ray crystallography. The molecule has a trigonal bipyramidal geometry with the alkylidyne and chlorine ligands axial.  相似文献   

5.
SmCl3 reacts with Me3SiCH2Li in THF yielding Sm(CH2SiMe3)3(THF)3 ( 1 ). The single crystal X‐ray structural analyses of 1 , Er(CH2SiMe3)3(THF)2 ( 2 ), Yb(CH2SiMe3)3(THF)2 ( 3 ), and Lu(CH2SiMe3)3(THF)2 ( 4 ) show the Sm atom in a fac‐octahedral coordination and the heavier lanthanides Er, Yb, and Lu trigonal bipyramidally coordinated with the three alkyl ligands in equatorial and two THF molecules in axial positions.  相似文献   

6.
The kinetics of the reactions of Cl atoms with CH3ONO and CH3ONO2 have been studied using relative rate techniques. In 700 Torr of nitrogen diluent at 295 ± 2K, k(Cl + CH3ONO) = (2.1 ± 0.2) × 10−12 and k(Cl + CH3ONO2) = (2.4 ± 0.2) × 10−13 cm3 molecule−1 s−1. The result for k(Cl + CH3ONO2) is in good agreement with the literature data. The result for k(Cl + CH3ONO) is a factor of 4.5 lower than that reported previously. It seems likely that in the previous study most of the loss of CH3ONO which was attributed to reaction with Cl atoms was actually caused by photolysis leading to an overestimate of k(Cl + CH3ONO). © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 357–359, 1999  相似文献   

7.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

8.
The Cl atom-initiated oxidation of CH2Cl2 and CH3Cl was studied using the FTIR method in the photolysis of mixtures typically containing Cl2 and the chlorinated methanes at 1 torr each in 700 torr air. The results obtained from product analysis were in general agreement with those reported by Sanhueza and Heicklen. The relative rate constant for the Cl atom reactions of CH2Cl2 and CH3Cl was determined to be k(Cl +CH3Cl)/k(Cl + CH2Cl2) = 1.31 ± 0.14 (2σ) at 298 ± 2 K.  相似文献   

9.
Solutions of the fluorous alkyl halides Rf8(CH2)mX (Rfn=(CF2)n?1CF3; m=2, 3; X=Cl, Br, I) in perfluoromethylcyclohexane or perfluoromethyldecalin are inert towards solid or aqueous NaCl, NaBr, KI, KCN, and NaOAc. However, halide substitution occurs in the presence of fluorous phosphonium salts (Rf8(CH2)2)(Rf6(CH2)2)3P+X? (X=I ( 1 ), Br ( 3 )) and (Rf8(CH2)2)4P+I? (10 mol %), which are soluble in the fluorous solvents under the reaction conditions (76–100 °C). Stoichiometric reactions of a) 1 with Rf8(CH2)2Br and b) 3 with Rf8(CH2)2I were conducted under homogenous conditions in perfluoromethyldecalin at 100 °C and yielded the same Rf8(CH2)2I/Rf8(CH2)2Br equilibrium ratio (≈60:40). This shows that ionic displacements can take place in extremely nonpolar fluorous phases and suggests a classical phase‐transfer mechanism for the catalyzed reactions. Interestingly, the nonfluorous salt (CH3(CH2)11)(CH3(CH2)7)3P+I? ( 4 ) also catalyzes halide substitutions, but under triphasic conditions with 4 suspended between the lower fluorous and upper aqueous layers. NMR experiments established very low solubilities in both phases, which suggests interfacial catalysis. Catalyst 1 is easily recycled, optimally by simple precipitation onto teflon tape.  相似文献   

10.
A series of Au(I)–Cu(I) N-heterocyclic carbene (NHC) halide complexes [AuCu2(im(CH2py)2)2X]2+ where X?=?Cl (1), Br (2), I (3) was prepared by refluxing [AuCu2(im(CH2py)2)2(NCCH3)4]3+ with the appropriate halide in acetonitrile. The compounds were characterized by NMR, absorption, and fluorescence spectroscopy. They feature similar solution behavior and solid-state photoemissions. The solid-state structures feature a rhomboidal [AuCu2X]2+ core which is influenced by the type of halide. Compared to other Au(I)–Cu(I) NHC complexes, 1–3 comprise a new structural motif containing a bridging halide. The benzimidazolium analog of 1 was also characterized crystallographically. The structure of [AuCu2(benzim(CH2py)2)2Cl]2+(4) features different coordination modes of the NHC ligands with the carbenic carbon bonded to both gold and copper and the pyridyl groups bonded to the same copper(I) ion.  相似文献   

11.
Rh‐containing metallacycles, [(TPA)RhIII2‐(C,N)‐CH2CH2(NR)2‐]Cl; TPA=N,N,N,N‐tris(2‐pyridylmethyl)amine have been accessed through treatment of the RhI ethylene complex, [(TPA)Rh(η2CH2CH2)]Cl ([ 1 ]Cl) with substituted diazenes. We show this methodology to be tolerant of electron‐deficient azo compounds including azo diesters (RCO2N?NCO2R; R=Et [ 3 ]Cl, R=iPr [ 4 ]Cl, R=tBu [ 5 ]Cl, and R=Bn [ 6 ]Cl) and a cyclic azo diamide: 4‐phenyl‐1,2,4‐triazole‐3,5‐dione (PTAD), [ 7 ]Cl. The latter complex features two ortho‐fused ring systems and constitutes the first 3‐rhoda‐1,2‐diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N–N coordination followed by insertion of ethylene into a [Rh]?N bond. In terms of reactivity, [ 3 ]Cl and [ 4 ]Cl successfully undergo ring‐opening using p‐toluenesulfonic acid, affording the Rh chlorides, [(TPA)RhIII(Cl)(κ1‐(C)‐CH2CH2(NCO2R)(NHCO2R)]OTs; [ 13 ]OTs and [ 14 ]OTs. Deprotection of [ 5 ]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end‐on coordinated diazene [(TPA)RhIII2‐(C,N)‐CH2CH2(NH)2‐]+ [ 16 ]Cl, a hitherto unreported motif. Treatment of [ 16 ]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)RhIII2‐(C,N)‐CH2CH2(NAc)2‐]+, [ 17 ]Cl. Treatment of [ 1 ]Cl with AcN?NAc did not give the Rh?N insertion product, but instead the N,O‐chelated complex [(TPA)RhI ( κ2‐(O,N)‐CH3(CO)(NH)(N?C(CH3)(OCH?CH2))]Cl [ 23 ]Cl, presumably through insertion of ethylene into a [Rh]?O bond.  相似文献   

12.
The reaction of Pt(PPh3)4 with CH2Cl1 in benzene yields the cationic ylide complex cis-[Pt(PPh3)2(CH2PPh3)Cl]I in high yield. This complex has been converted to cis-[(PPh3)2(CH2PPh3)X]X (X  Br or I) by reaction with LiBr or NaI. Reaction of cis-[Pt(PPH3)I]I with iodine yields cis-[Pt(PPh3)2(CH2PPh3)I]I3. Nmr data are given in support of the suggested structures.  相似文献   

13.
The kinetics of the gas-phase reaction of Cl atoms with CF3I have been studied relative to the reaction of Cl atoms with CH4 over the temperature range 271–363 K. Using k(Cl + CH4) = 9.6 × 10?12 exp(?2680/RT) cm3 molecule?1 s?1, we derive k(Cl + CF3I) = 6.25 × 10?11 exp(?2970/RT) in which Ea has units of cal mol?1. CF3 radicals are produced from the reaction of Cl with CF3I in a yield which was indistinguishable from 100%. Other relative rate constant ratios measured at 296 K during these experiments were k(Cl + C2F5I)/k(Cl + CF3I) = 11.0 ± 0.6 and k(Cl + C2F5I)/k(Cl + C2H5Cl) = 0.49 ± 0.02. The reaction of CF3 radicals with Cl2 was studied relative to that with O2 at pressures from 4 to 700 torr of N2 diluent. By using the published absolute rate constants for k(CF3 + O2) at 1–10 torr to calibrate the pressure dependence of these relative rate constants, values of the low- and high-pressure limiting rate constants have been determined at 296 K using a Troe expression: k0(CF3 + O2) = (4.8 ± 1.2) × 10?29 cm6 molecule?2 s?1; k(CF3 + O2) = (3.95 ± 0.25) × 10?12 cm3 molecule?1 s?1; Fc = 0.46. The value of the rate constant k(CF3 + Cl2) was determined to be (3.5 ± 0.4) × 10?14 cm3 molecule?1 s?1 at 296 K. The reaction of Cl atoms with CF3I is a convenient way to prepare CF3 radicals for laboratory study. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
With dithiooxamides, Zn(II) in acid media forms distorted tetrahedral complexes, which behave as non-electrolytes. The ligands act as bidentates with S, S coordination.A thorough vibrational analysis has been performed for the Zn(CH3 NHCSCSNHCH3)X2(X = Cl, Br, I) and for the Zn[(CH3)2NCSCSN(CH3)2]X2(X = Cl, Br, I) complexes.  相似文献   

15.
The reactions of phosphonium‐substituted metallabenzenes and metallapyridinium with bis(diphenylphosphino)methane (DPPM) were investigated. Treatment of [Os{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl with DPPM produced osmabenzenes [Os{CHC(PPh3)CHC(PPh3)CH}Cl2{(PPh2)CH2(PPh2)}]Cl ( 2 ), [Os{CHC(PPh3)CHC(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 3 ), and cyclic osmium η2‐allene complex [Os{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 4 ). When the analogue complex of osmabenzene 1 , ruthenabenzene [Ru{CHC(PPh3)CHC(PPh3)CH}Cl2(PPh3)2]Cl, was used, the reaction produced ruthenacyclohexadiene [Ru{CH?C(PPh3)CH?C(PPh3)CH}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 6 ), which could be viewed as a Jackson–Meisenheimer complex. Complex 6 is unstable in solution and can easily be convert to the cyclic ruthenium η2‐allene complexes [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl{(PPh2)CH2(PPh2)}2]Cl2 ( 7 ) and [Ru{CH?C(PPh3)CH?(η2‐C?CH)}Cl2{(PPh2)CH2(PPh2)}2]Cl ( 8 ). The key intermediates of the reactions have been isolated and fully characterized, further supporting the proposed mechanism for the reactions. Similar reactions also occurred in phosphonium‐substituted metallapyridinium [OsCl2{NHC(CH3)C(Ph)C(PPh3)CH}(PPh3)2]BF4 to give the cyclic osmium η2‐allene‐imine complex [OsCl2{NH?C(CH3)C(Ph)?(η2‐C?CH)}{(PPh2)CH2(PPh2)}(PPh3)]BF4 ( 11 ).  相似文献   

16.
The syntheses of the asymmetrically substituted tetraorganodistannoxanes [t‐Bu2(X)SnOSn(Y)(CH2SiMe3)2]2 ( 1 , X = Y = OH; 2 , X = Cl, Y = OH; 3 , X = Y = Cl) are reported and their structures in solution and in the solid state are characterized by multinuclear NMR spectroscopy and single crystal X‐ray analyses. In toluene, the tetrahydroxy‐substituted derivative 1 is in equilibrium with the organotin oxides cyclo‐[t‐Bu2Sn{OSn(CH2SiMe3)2}2O] ( 4 ), cyclo[(Me3SiCH2)2Sn(OSnt‐Bu2)2O] ( 5 ), and cyclo‐(t‐Bu2SnO)3, and some additional, undefined species containing pentacoordinated tin atoms. In contrast, the dihydroxydichloro‐substituted derivative 2 is inert in solution.  相似文献   

17.
Formation of Organosilicon Compounds. 98. Reaction of Silylated Phosphorus Ylides with PCl3 The reaction of Si-substituted phosphorus ylides as Me2Si(CH2? SiMe2)2C?PMe3Br 1 , Cl2Si(CH2? SiCl2)2C?PMe2Cl 2 , and (Cl3Si)2C?PMe2Cl 3 with PCl3 yields (Cl2P)2C?PMe2Cl 5 by chlorinating cleavage of the Si-ylid-C bond. Besides 5 also (ClMe2SiCH2)2SiMe2, (Cl3SiCH2)2SiCl2, resp. SiCl4 result from the reaction of 1, 2 and 3 with PCl3. (Cl2P)2C?PMe2Cl forms colourless crystals, mp. 84°C.  相似文献   

18.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

19.
An electropolymerization of haloalkylhalosilanes (Cl? R? SiCH3Cl2) that possess two types of electroactive sites, that is, the C? Cl and Si? Cl bond is described. The one‐pot synthesis method is shown to yield branched polycarbosilanes having a regular carbon block‐spaced silicon backbone structure. A series of branched polycarbosilanes, [? R? SiCH3? ]n with R being ? CH2? , ? C2H4? , ? C3H6? , and ? CH2? C6H4? C2H4? , have been successfully electropolymerized with Mn up to 42,600 Dalton. Experimental and simulation cyclic voltammetry of these monomers and the computational examination of their LUMOs are applied to study the electropolymerization mechanism. The results suggest that polymerization proceeds by iterating steps involving (1) electroreduction of a C? Cl bond to a carbanion, which is catalyzed by silylanion radical [Cl SiCl(CH3)RCl] and/or Ni(0)/TDA‐1; and (2) nucleophilic attack of carbanions to Si? Cl bonds of a second monomer or oligomer to extend the polymer chain. The investigation reveals that the R spacer has a considerable impact on the polymerizability of the corresponding monomer. Such interfacial polymerization resembles a template polymerization, leading to unique microstructures that were preserved even after converted to silicon carbide ceramics at high temperatures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7677–7689, 2008  相似文献   

20.
A new metal-metal bonded binuclear iron system [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2]2 (2) has been prepared by treating two equivalents of NaCp with one equivalent of ClSi(Me)2CH2CH2SiClMe2 obtaining the intermediate (C5H5)Si(Me)2CH2CH2Si(Me)2(C5H5) which then is directly allowed to react with Fe(CO)5 given 2 in 30% yield. From this cyclopentadienyldisilyl linked system three new binuclear irom complexes are formed. Treatment of 2 with Na/Hg in THF produced the dianion [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2?]2 which is quenched with CH3I giving [Me2SiCH2CH2SiMe2][η5-C4H4Fe(CO)2CH3]2 (4) in 76% yield. Complex 2 is oxidized with 1.2 equivalent of I2 to give [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)2I]2 (5) in 85% yield. Photolysis of 5 (1 equiv.) and PPh3 (3 equiv.) results in the formation of the bis-substituted compound [Me2SiCH2CH2SiMe2][η5-C5H4Fe(CO)(PPh3)I]2 (6). These four new binuclear iron complexes are characterized by 1H, 13C, and 31P NMR and IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号