首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The compounds alpha- and beta-hopeite have been synthesised by hydrothermal crystallisation from aqueous solution at 90 degrees C and 20 degrees C, respectively. The crystal structures of these polymorphic forms of zinc phosphate tetrahydrate (ZPT), Zn(3)(PO(4))(2).4 H(2)O, have been resolved. Single-crystal analysis proves that the main difference between the alpha and beta forms of ZPT is caused by the difference in orientation of one of the water molecules in the ZnO(6) octahedral network, indicating two different hydrogen-bonding patterns. A previously unknown hopeite, Zn(3)(HPO(4))(3).3 H(2)O (ZHPT), has been isolated and analysed. This helps to achieve a better understanding of the mechanism of formation of zinc phosphate compounds. Unambiguous identification of each phase is established by analysis of their unique thermal behaviour and thermodynamic interrelationship.  相似文献   

3.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

4.
5.
This work contributes to the growth of bulk crystals where crystals are grown from a molten-solution zone (MSZ). Our original modifications ofTHM have been used for a crystallization of GaSb and of (Ga.In)Sb—the ternary Solid Solution (TSS). The crystallization process has been accelerated with a low frequency and low energy vibrational stirring (VS). Lately, the stirring has been combined with the magneto-hydrodynamical stirring (MHD-S) and applied on GaSb. The lattice parameter ‘a’ ofTSS crystals has been constant throughout the significant part of the ingot length. This approach has permitted the growth of these crystalline ingots with ‘a’ apriori chosen and calculated—having the deviation from its constancy less than 0.03% (0.2 pm) with a 75 mm length. Crystals can have a mosaic structure at this stage.  相似文献   

6.
Zr2MSb3 (M: Cu, Pd) and Zr3MSb7 (M: Ni, Pd) are prepared by arc melting of the elements followed by annealing at 973 K in evacuated quartz tubes.  相似文献   

7.
8.
9.
Well-aligned zinc oxide microrod and microtube arrays with high aspect ratios were fabricated on zinc foil by a simple solution-phase approach in an aqueous solution of ethylenediamine (en). The shape of the ZnO microstructures can be easily modulated from rods to tubes by adding cetyl trimethyl ammonium bromide (CTAB) into the reaction system. Control experiments demonstrate that some reaction parameters, such as the concentration of ethylenediamine, the kind of surfactant, reaction time, and the temperature, all have direct influences on the morphology of the products. Based on the early structure arising from arrested growth (nanosheets), a reasonable mechanism for the growth of ZnO microrods and microtubes has been proposed. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and photoluminescence emission.  相似文献   

10.
Two new Zintl compounds A10LaCdSb9 (A=Ca, Yb), namely, Ca9.81(1)La0.97(1)Cd1.23(1)Sb9 and Yb9.78(1)La0.97(1)Cd1.24(1)Sb9, have been designed and synthesized by applying the Zintl concept. Although both compounds are isoelectronic with their Ca11InSb9 and Yb11InSb9 analogues, they crystallize in a new structure type with the orthorhombic space group Ibam (No.72) and feature very complex anion structures, which are composed of unique [Cd2Sb6]12? clusters, dumbbell‐shaped [Sb2]4? dimers, and isolated [Sb]3? anions. For Yb9.78(1)La0.97(1)Cd1.24(1)Sb9, an extremely low lattice thermal conductivity of 0.29 W m?1 K?1 was observed at 875 K, which almost approaches the lowest reported limit of nonglassy or nonionically conducting bulk materials. According to thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses, both compounds show very good thermal stability and no melting or phase transition processes were found below 1173 K. Although related thermoelectric property studies on Yb9.78(1)La0.97(1)Cd1.24(1)Sb9 only present a maximum ZT of 0.11 at 920 K, owing to its low Seebeck coefficients, these materials are still very promising for their high temperature stability and low thermal conductivity. Furthermore, as mixed cations exist with different charges, it makes this system very flexible in tuning the related electrical properties.  相似文献   

11.
The new zinc(II) complexes of general formula Zn(CH3CH2CH2COO)2· nL (whereL = caffeine, nicotinamide, theobromine;n=1 or 2) were prepared and identified.Thermal properties of these compounds were investigated by thermal analysis (TG/DTG, DTA, DSC/DDSC).Gaseous products of thermal decomposition were detected by IR spectroscopy and Mass spectroscopy. Final products of thermal decomposition were determined by X-ray powder diffraction patterns.This work was supported by the Slovak Ministry of Education Grant No. 1/3230/96. This financial support is gratefully acknowledged.  相似文献   

12.
13.
New zinc acetate based complex compounds (of general formula Zn(CH3COO)2·1?2L·nH2O) containing one or two molecules of urea, thiourea, coffeine and phenazone were prepared namely: Zn(CH3COO)2·2.5H2O, Zn(CH3COO)2·2u·0.5H2O, Zn(CH3COO)2·tu·0.5H2O, Zn(CH3COO)2·2tu, Zn(CH3COO)2·cof·2.5H2O, Zn(CH3COO)2·2cof·3.5H2O, Zn(CH3COO)2·2phen·1.5H2O. The compounds were characterized by IR spectroscopy, chemical analysis and thermal analysis. Thermal analysis showed that no changes in crystallographic modifications of the compounds take place during (heating in nitrogen before) the thermal decompositions. The temperature interval of the stability of the prepared compounds were determined. It was found that the thermal decomposition of hydrated compounds starts by the release of water molecules. During the thermal decomposition of anhydrous compounds in nitrogen the release of organic ligands take place followed by the decomposition of the acetate anion. Zinc oxide and metallic zinc were found as final products of the thermal decomposition of the zinc acetate based complex compounds studied. Carbon dioxide and acetone were detected in the gaseous products of the decomposition of the compounds if ZnO is formed. Carbon monoxide and acetaldehyde were detected in the gaseous products of the decomposition, if metallic Zn is formed. It is supposed that ZnO and Zn resulting from Zn acetate complex compounds here studied, possess different degree of structural disorder. Annealing takes place by further heating above 600°C.  相似文献   

14.
15.
We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control of the experimental conditions. Over 15 g of high‐quality AgSbS2 NCs can be obtained from one single reaction, indicative of the up‐scalability of the present synthesis. The resulting NCs display strong absorptions in the visible‐to‐NIR range and exceptional air stability. The photoelectrochemical measurements indicate that, although the pristine AgSbS2 NC electrodes generate a cathodic photocurrent with a relatively small photocurrent density and poor stability, both of them can be significantly improved subject to CdS surface modification, showing promise in solar energy conversion applications.  相似文献   

16.
This report describes the solid-state structures of a series of divinylzinc complexes, one of which represents the only structurally characterized zinc(II) pi-complex. Vinylzinc reagents, Zn[C(Me)=CH2]2 (1) and Zn[C(H)=CMe2]2 (2), have been synthesized and isolated as white crystalline solids in 66 and 72% yield, respectively. Each compound exhibits an infinite polymeric architecture in the solid state via a series of zinc-pi (1) and zinc-sigma-bonded (2) bridging interactions. Addition of chelating ligands to these divinylzinc compounds allowed isolation of the monomeric adducts (bipy)Zn[C(Me)=CH2]2 (1.bipy), (tmeda)Zn[C(Me)=CH2]2 (1*tmeda), (bipy)Zn[C(H)=CMe2]2 (2*bipy), and (tmeda)Zn[C(H)=CMe2]2 (2*tmeda), of which 1*bipy, 2*bipy, and 2*tmeda have been characterized crystallographically.  相似文献   

17.
A comparative study of alloy formation processes that occur during the electrochemical intercalation of lithium from lithium chloride solutions in dimethylformamide into intermetallic compounds of magnesium with zinc (MgZn2, Mg2Zn3) and the corresponding individual metals is studied by chronopotentiometric and voltammetric methods. Lithium-containing phases are formed in all samples studied; moreover, for MgZn2 and Mg2Zn3 electrodes, the phases formed are preferentially in the Li-Zn system. The largest number of lithium-containing phases is formed in zinc. It is shown that the electrochemical behavior of intermetallic electrodes is associated with their nature, where a single alloy component plays the key role, namely, zinc for MgZn2 and magnesium for Mg2Zn3. The cathodic intercalation of lithium into MgZn2 is characterized by anomalously low polarizability as compared with the other electrodes. The lithium extraction coefficient K ex Li increases from the first to the tenth cycle for all electrode studied. The highest K ex Li are typical of Zn and the lowest are typical of Mg2Zn3.  相似文献   

18.
《Mendeleev Communications》2022,32(4):517-519
Reactions of Sb2O3 or Bi2O3, 1,2-bis(4-pyridyl)ethane (bpe) and diiodine in concentrated HI resulted in isostructural salts (H2bpe)2[MI6](I3) [M = Sb (1), Bi (2)] featuring perovskite-like arrangement of anions in crystal packing. Physical properties, including UV-Vis and Raman spectra, as well as thermal stability, were investigated and compared for this pair of complexes; the optical band gaps for 1 and 2 are 1.32 and 1.57 eV, respectively.  相似文献   

19.
Intradiffusion coefficients for36ClO 4 have been measured in solutions of zinc perchlorate of concentration 0.1 to 3 mol dm–3 at 25°C by the diaphragm cell technique. In addition, intradiffusion coefficients for perchlorate ions in zinc chloride solutions have been measured over a concentration range at 25°C. The results confirm previous work on the effect of complexation on diffusion in zinc chloride solutions above a salt concentration of 0.1M. The present data, together with literature data for diffusion coefficients of the other species present in the zinc perchlorate electrolyte system, have enabled a simple analysis of the hydration around the zinc ions to be carried out. This indicates that the water diffusion data are consistent with the zinc ions having an effective hydration sphere of 11 (±2) water molecules. This is in keeping with values obtained for other simple divalent electrolytes using the same model. The model is extended here to allow analysis of water diffusion in zinc chloride solutions taking into account the presence of complexed chloro-zinc species. The experimental data are consistent with the effective hydration of the chloro-zinc complexes being independent of the number of chloride ligands and equal to 18±3 over a concentration range of 0 tol mol-dm–3. This postulate is discussed in terms of its consequences on the water ligand dynamics for the complex equilibria.  相似文献   

20.
Three isoreticular zinc(II)-phosphonocarboxylate frameworks, namely {[Zn(3)(pbdc)(2)]·2H(3)O}(n) (ZnPC-2), {[Zn(3)(pbdc)(2)]·Hpd·H(3)O·4H(2)O}(n) (Hpd@ZnPC-2) and {[Co(1.5)Zn(1.5)(pbdc)(2)]·2H(3)O}(n) (CoZnPC-2) (H(4)pbdc=5-phosphonobenzene-1,3-dicarboxylic acid, pd=pyrrolidine), were solvothermally synthesized. ZnPC-2 has a 3D structure based on trinuclear Zn(II) clusters (Zn(3)-SBU) showing 3D interconnected channels. Hpd@ZnPC-2 contains an isoreticular framework of ZnPC-2 with small channels blocked by Hpd molecules. In CoZnPC-2, Zn(II) ions in ZnPC-2 are partially substituted by Co(II) ions. The Friedel-Crafts benzylation reactions were carried out over these isoreticular porous materials. The catalytic results reveal that ZnPC-2 is an excellent heterogeneous Lewis acid catalyst with a high selectivity (>90%) towards less bulky para-oriented products. The catalytic reaction has been proved to occur inside the pore of ZnPC-2, and the immobilized Zn(3)-SBUs are the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号