首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A simple kinetic method has been applied to measure the formation constants of aqueous copper(I) with fumaronitrile, dimethyl fumarate, and fumaric and maleic acids. At 0.14 M ionic strength, the values of beta(1) are (0.85 +/- 0.02) x 10(3), (6.1 +/- 0.1) x 10(3), (7.3 +/- 0.1) x 10(3), and (2.2 +/- 0.4) x 10(3) M(-1), respectively. The values for the last two olefins are compared to previous results. Values of beta(1) for hydrogen maleate and beta(2) for fumaronitrile also have been determined. A reanalysis of much earlier work has been done, and all the results are discussed in terms of the effect of substituents on the olefin on the beta(1) values. The structure of bis(fumaronitrile)copper(I) nitrate also is reported. The nitrile is N-coordinated to copper(I), which has a distorted tetrahedral geometry, while the overall structure consists of macrocyclic Cu(6)(fumaronitrile)(6) rings which extend in three dimensions.  相似文献   

2.
pK(a) values for the hydroxamic acid, alpha-NH(3)(+), and epsilon-NH(3)(+) groups of L-lysinehydroxamic acid (LyHA, H(3)L(2+)) were found to be 6.87, 8.89, and 10.76, respectively, in aqueous solution (I = 0.1 M, NaClO(4)) at 25 degrees C. O,O coordination to Fe(III) by LyHA is supported by H(+) stoichiometry, UV-vis spectral shifts, and a shift in nu(CO) from 1648 to 1592 cm(-1) upon formation of mono(L-lysinehydroxamato)tetra(aquo)iron(III) (Fe(H(2)L)(H(2)O)(4)(4+)). The stepwise formation of tris(L-lysinehydroxamato)iron(III) from Fe(H(2)O)(6)(3+) and H(3)L(2+) was characterized by spectrophotometric titration, and the values for log beta(1), log beta(2), and log beta(3) are 6.80(9), 12.4(2), and 16.1(2), respectively, at 25 degrees C and I = 2.0 M (NaClO(4)). Stopped-flow spectrophotometry was used to study the proton-driven stepwise ligand dissociation kinetics of tris(L-lysinehydroxamato)iron(III) at 25 degrees C and I = 2.0 M (HClO(4)/NaClO(4)). Defining k(n) and k(-n) as the stepwise ligand dissociation and association rate constants and n as the number of bound LyHA ligands, k(3), k(-3), k(2), k(-2), k(1), and k(-1) are 3.0 x 10(4), 2.4 x 10(1), 3.9 x 10(2), 1.9 x 10(1), 1.4 x 10(-1), and 1.2 x 10(-1) M(-1) s(-1), respectively. These rate and equilibrium constants are compared with corresponding constants for Fe(III) complexes of acetohydroxamic acid (AHA) and N-methylacetohydroxamic acid (NMAHA) in the form of a linear free energy relationship. The role of electrostatics in these complexation reactions to form the highly charged Fe(LyHA)(3)(6+) species is discussed, and an interchange mechanism mediated by charge repulsion is presented. The reduction potential for tris(L-lysinehydroxamato)iron(III) is -214 mV (vs. NHE), and a comparison to other hydroxamic acid complexes of Fe(III) is made through a correlation between E(1/2) and pFe.  相似文献   

3.
Moya HD  Neves EA  Coichev N 《Talanta》1997,44(5):797-803
The evidences of spontaneous oxidation of Mn(II) by the dissolved oxygen in azide buffer medium, which is dependent on the N (-)(3)HN (3) concentration, suggested a formation of stable Mn(III) complexes due to marked colour changes. Spectrophotometric studies combined with coulometric generation of Mn(III), in presence of large excess of Mn(II), showed a maximum absorbance peak at 432 nm. The molar absorptivity increases with azide concentration (0.44-3.9 mol 1(-1)) from 3100 to 6300 mol(-1) 1 cm(-1), showing a stepwise complex formation. Potential measurements of the Mn(III) Mn(II) system in several azide aqueous buffers solutions: 1.0 x 10(-2) mol 1(-1) HN(3), (0.50-2.0 mol 1(-1)) N(-)(3) and 5.0 x 10(-2) mol 1(-1) Mn(II) and constant ionic strength 2.0 mol 1(-1), kept with sodium perchlorate, leads to the conditional potential, E(0')x, in several azide concentrations at 25.0 +/- 0.1 degrees C. Considering the overall formation constants of Mn(II) N (-)(3), from former studies, and the potential, E(0')s = 1.063 V versus SCE, for Mn(III) Mn(II) system in non-complexing media, it was possible to calculate the Fronaeus function, F(0)(L), and the following overall formation constants: beta(1) = 1.2 x 10(5) M(-1), beta(2) = 6.0 x 10(8) M(-2), beta(3) = (2.4 +/- 0.7) x 10(11) M(-3), beta(4) = (1.5 +/- 0.5) x 10(11) M(-4) and beta(5) = (9.6 +/- 0.8) x 10(11) M(-5) for the Mn(III) N (-)(3) complexes. These data give important support to understand the importance of Mn(II) and Mn(III) synergistic effect on the analytical method of S(IV) determination based on the Co(II) autoxidation.  相似文献   

4.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

5.
Daniele PG  Rigano C  Sammartano S  Zelano V 《Talanta》1994,41(9):1577-1582
The hydrolysis of iron(III) was studied potentiometrically at different ionic strengths in KNO(3) aqueous solutions, at 25 degrees C, to determine the dependence of hydrolysis constants on ionic strength (nitrate media), to check the existence of nitrate-ferric ion interactions, and to confirm the formation of high polymeric species. Under the experimental conditions 0.03 I (KNO(3)) 1M, 0.3 C 12 mM, the species Fe(OH)(2+), Fe(2)(OH)(4+)(2), Fe(OH)(+)(2) and Fe(12)(OH)(2+)(34) were found, and the hydrolysis constants log beta(11) = 2.20, log beta(12) = -2.91, log beta(22) = -5.7, log beta(12,34) = -48.9 (I = 0M) were calculated. The ionic strength dependence of hydrolysis constants is quite close to that found for several protonation and metal complex formation constants reported elsewhere.  相似文献   

6.
The polarographic method has been applied to the study of the mixed-ligand system Cu(II)-glycine-glycinate, in aqueous medium, at I = 1.0M (NaClO(4)) and 25 -/+ 0.1 degrees . The stabilization of the mixed complex [CuG(G(-))](+) has been made clear and its stability constant (beta(11) = 1 x 10(9)) has been determined. The stability constants of the complexes [CuG]I(2+) (beta(10) = 17), [CuG(2)](2+) (beta(20) = 230), [Cu(G(-))](+) (beta(01) = 2.1 x 10(8)) and [Cu(G(-))(2)] (beta(02) = 1.7 x 10(15)) have also been calculated.  相似文献   

7.
Bertotti M  Tokoro R 《Talanta》1989,36(3):424-426
The stability constants of indium-azide complexes were determined by the potentiometric method (glass electrode). The effect monitored was the change in pH of a solution of azide and hydrazoic acid (N(-)(3)/HN(3)) when indium(III) cations were added. The azide concentration was varied from close to zero to 90mM, the ionic strength being kept at 2.000 M with sodium perchlorate and the temperature at 25.0 degrees . Evaluation of experimental data showed only mononuclear species, and the global constants found were beta(1) = (2.0 +/- 0.1) x 10(3), beta(2) = (7 +/- 2) x 10(5), beta(3) = (5 +/- 1) x 10(7) and beta(4) = (7 +/- 3) x 10(8).  相似文献   

8.
The photodegradation reactions of riboflavin (RF) in the presence of 0.05-2.00 M phosphate (pH 7.0) have been studied using a specific multicomponent spectrophotometric method. The reactions involve simultaneous photolysis (intramolecular photoreduction) and photoaddition (intramolecular photoaddition) leading to lumichrome (LC) and cyclodehydroriboflavin (CDRF), respectively, as major products. The contribution of each reaction in the overall photodegradation depends upon the phosphate concentration, i.e., higher the phosphate concentration higher the extent of photoaddition. The apparent first-order rate constants for the photodegradation of RF and for the formation of LC and CDRF at 0.25-2.00 M phosphate concentration range from 0.65 to 3.03 x 10(-2), and from 0.41 to 0.99 x 10(-2) and 0.12 to 1.63 x 10(-2) min(-1), respectively. The second-order rate constants for the phosphate catalysed photodegradation of RF and for the formation of LC and CDRF are 2.12 x 10(-4) and 0.61 x 10(-4) and 1.41 x 10(-4) M(-1)s (-1), respectively. Since the formation of CDRF by photoaddition is catalysed by HPO(4)(2-) ions, it is suggested that H(2)PO(4)(-) ions may be involved in the formation of LC by photolysis. Thus, both H(2)PO(4)(-) and HPO(4)(2-) ions may catalyse the two major reaction pathways of riboflavin photodegradation, respectively.  相似文献   

9.
The complex formation between Mn(II) cations and N(3)(-) anions was studied in aqueous medium at 25 degrees C and ionic strength 2.0 M (NaClO(4)). Data of average ligand number, n (Bjerrum's function), were obtained from pH measurements on the Mn(II)/N(3)(-)/HN(3) system followed by integration to obtain Leden's function, F(0)(L). Graphical treatment of data and a matrix solution of simultaneous equations have given the following overall formation constants of mononuclear stepwise complexes: beta(1)=4.15+/-0.02 M(-1), beta(2)=6.61+/-0.04 M(-2), beta(3)=3.33+/-0.02 M(-3), beta(4)=0.63+/-0.01 M(-4). A linear plot of log K(n) vs. (n-1) shows no change in the configuration during complex formation. Slow spontaneous oxidation of solutions to Mn(III) occurs when the N(3)(-) concentration is greater than 1.0 M.  相似文献   

10.
A potentiometric and spectrophotometric investigation on the formation of zinc(II) complexes with Semi-Xylenol Orange (SXO or H(4)L) is reported. In an aqueous solution (mu = 0.1), three 1:1 complex species, MH(2)L, MHL(-), ML(2-), and a 1:2 complex, ML(6-)(2), seem to exist. In a strongly alkaline medium (above pH 12.5) the complexes may dissociate to give zinc hydroxide and L(4-). The formation of a hydroxy complex is not observed. The absorption maxima are at 445 nm (MH(2)L), 466 nm (MHL(-)) and 561 nm (ML(2-)), the molar absorptivities being 2.34 x 10(4), 2.42 x 10(4) and 3.14 x 10(4) 1.mole(-1) .cm(-1) respectively. The formation constants are (at 25 +/- 0.1 degrees ) log K(M)(ML) = 11.84, log K(M)(MHL) = 7.13, log K(M)(MH(2)L) = 2.70, log K(M)(ML(2)) = 16.60.  相似文献   

11.
Neves EA  de Oliveira E  Santos ZL 《Talanta》1980,27(7):609-612
The reaction between copper (II) and azide has been studied spectrophotometrically at four wavelengths, at 25 degrees , and ionic strength 4.00M (sodium perchlorate). The formation constants beta(2) and beta(3) found are 2.90 +/- 0.08 x 10(4) and 3.02 +/- 0.07 x 10(6) respectively. The results obtained from potentiometric measurements with a solid-state electrode disagree with those calculated from the spectrophotometric data. Causes of the discrepancy are discussed.  相似文献   

12.
3-(5'-tetrazolylazo)-2,6-Diaminotoluene (TEADAT, H(3)L(2+)) forms stable 1:1 and 1:2 (metal:ligand) pink-red complexes (lambda(max) 506 and 536 nm) with palladium(II). The apparent molar absorptivity of 1:2 complex is 5.2 x 10(4) 1.mol(-1). cm(-1) at 536 nm. Equilibrium constants beta*(nl) for reactions PdCl(2-)(4) + nH(3)L(2+) right harpoon over left harpoonright harpoon over left harpoon PdCl(4-n) (H(2)L)(2n-2)(n) + n Cl(-) + n H(+) were determined: logbeta*(1) = 4.09 +/- 0.05, logbeta*(2) = 8.40 +/- 0.02, corresponding stability conditional constants of PdCl(3)(H(2)L) and PdCl(2)(H(2)L)(2+)(2) were log beta(1) = 19.03, log beta(2) = 26.74. The formation of complexes was rather slow but could be speeded up considerably by the catalytic effect of trace amounts of thiocyanate. Constant absorbance values were thus reached in 2-5 min. A rapid, sensitive and highly specific method for the determination of palladium(II) at pH 1.42 in 0.25M NACl has been worked out with a detection limit of 0.54 mug. Interference of precious and common metal ions have been studied and the method has been applied for the determination of palladium in Pd asbestos, oakay alloys and various catalysts and for the determination of palladium in precious metals.  相似文献   

13.
Stopped-flow spectrophotometric measurements identify and determine equilibrium data for thiourea (tu) complexes of copper(II) formed in aqueous solution. In excess Cu(II), the complex ion [Cu(tu)](2+) has a stability constant beta(1) = 2.3 +/- 0.1 M(-)(1) and molar absorptivity at 340 nm of epsilon(1) = (4.0 +/- 0.2) x 10(3) M(-)(1) cm(-)(1) at 25.0 degrees C, 2.48 mM HClO(4), and &mgr; = 464 mM (NaClO(4)). The fast reduction of Cu(II) by excess tu obeys the rate law -d[Cu(II)]/dt = k'[Cu(II)](2)[tu](7) with a value for the ninth-order rate constant k' = (1.60 +/- 0.18) x 10(14) M(-)(8) s(-)(1), which derives from a rate-determining step involving the bimolecular decomposition of two complexed Cu(II) species. Copper(II) catalyzes the reduction of hexachloroiridate(IV) by tu according to the rate law -d[IrCl(6)(2)(-)]/dt = (k(2,unc)[tu](2) + k(1,cat) [tu](5)[Cu(II)])[IrCl(6)(2)(-)]. Least-squares analysis yields values of k(2,unc) and k(1,cat) equaling 385 +/- 4 M(-)(2) s(-)(1) and (3.7 +/- 0.1) x 10(13) M(-)(6) s(-)(1), respectively, at &mgr; = 115 mM (NaClO(4)). The corresponding mechanism has a rate-determining step that involves the oxidation of [Cu(II)(tu)(5)](2+) by [IrCl(6)](2)(-) rather than the bimolecular reaction of two cupric-tu complexes.  相似文献   

14.
Glasner A  Sarig S  Weiss D  Zidon M 《Talanta》1972,19(1):45-49
The molar absorptivity of the cyanide complexes [Cu(CN)(3)](2-) and [Cu(CN)(4)](3-), at their isosbestic wavelength (235 nm) is 1.13 x 10(3) l.mole(-1)mm.(-1) and can be used for the quantitative determination of micro-amounts of copper in the ppm range. The determination of 1-10 mug of Cu(2+) per g of NaCl, or 0.25-2.5 mug ml , is described in detail. The co-precipitation of copper with NaCl crystallizing from aqueous solutions has been studied by this method.  相似文献   

15.
The hydrolysis of copper(II) has been studied in experimental conditions for which polynuclear species are formed prevalently. The study has been carried out by the pH-metric technique at different temperatures and ionic strengths in NaClO(4) aqueous solution. As previously reported in literature, the most important hydrolytic species is Cu(2)(OH)(2)(2+). For copper(II) concentrations greater than 75 mmol dm(-3), also the species Cu(2)(OH)(3+) is formed in appreciable amount. The formation constants of these species have been determined, together with their dependence on ionic strength. The temperature coefficients of equilibrium constants allowed to obtain the relative formation enthalpies.  相似文献   

16.
Comparisons (25 degrees C) are made of substitution reactions, X replacing H(2)O, at the tetrahedral Ni of the heterometallic sulfido cuboidal cluster [Mo(3)NiS(4)(H(2)O)(10)](4+), I = 2.00 M (LiClO(4)). Stopped-flow formation rate constants (k(f)/M(-)(1) s(-)(1)) for six X reagents, including two water soluble air-stable phosphines, 1,3,5-triaza-7-phosphaadamantane PTA (119) and tris(3-sulfonatophenyl)phosphine TPPTS(3)(-) (58), and CO (0.66), Br(-) (14.6), I(-) (32.3), and NCS(-) (44) are reported alongside the previous value for Cl(-) (9.4). A dependence on [H(+)] is observed with PTA, which gives an unreactive form confirmed by NMR as N-protonated PTA (acid dissociation constant K(a) = 0.61 M), but in no other cases with [H(+)] in the range 0.30-2.00 M. The narrow spread of rate constants for all but the CO reaction is consistent with an I(d) dissociative interchange mechanism. In addition NMR studies with H(2)(17)O enriched solvent are too slow for direct determination of the water-exchange rate constant indicating a value <10(3) s(-)(1). Equilibrium constants/M(-)(1) for 1:1 complexing with the different X groups at the Ni are obtained for PTA (2040) and TPPTS(3)(-) (8900) by direct spectrophotometry and from kinetic studies (k(f)/k(b)) for Cl(-) (97), Br(-) (150), NCS(-) (690), and CO (5150). No NCS(-) substitution at the Ni is observed in the case of the heterometallic cube [Mo(3)Ni(L)S(4)(H(2)O)(9)](4+), with tridentate 1,4,7-triazacyclononane(L) coordinated to the Ni. Substitution of NCS(-) for H(2)O, at the Mo's of [Mo(3)NiS(4)(H(2)O)(10)](4+) and [Mo(3)(NiL)S(4)(H(2)O)(9)](4+) are much slower secondary processes, with k(f) = 2.7 x 10(-)(4) M(-)(1) s(-)(1) and 0.94 x 10(-)(4) M(-)(1) s(-)(1) respectively. No substitution of H(2)O by TPPTS(3)(-) or CO is observed over approximately 1h at either metal on [Mo(3)FeS(4)(H(2)O)(10)](4+), on [Mo(4)S(4)(H(2)O)(12)](5+) or [Mo(3)S(4)(H(2)O)(9)](4+).  相似文献   

17.
Linder PW  Little JC 《Talanta》1985,32(1):83-85
The system of orthophosphate, magnesium and hydrogen ions in aqueous solution at 25 degrees and I = 0.2M chloride has been characterized by means of glass-electrode potentiometry. Protonation constants for orthophosphate species and formation constants for the complexes MgH(2)PO(+)(4), MgHPO(4), MgPO(4)(-) and MgOH(+) are reported.  相似文献   

18.
A simple and sensitive spectrophotometric method for determination of copper(II) is based on the formation of a blue coloured complex of Cu(II) with 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF) in the presence of cetylpyridinium chloride (CP) and Triton X-100, has been developed. Optimum concentrations of PF, CP, Triton X-100 and pH ensuring maximum absorbance were defined. The complex Cu(II)-PF-CP-Triton X-100 shows maximum absorbance at 595 nm with a molar absorptivity value of 9.67x10(4) l mol(-1) cm(-1). The detection limit of the method is 0.028 mug ml(-1). Beer's law is obeyed for copper concentrations in the range 0.04-0.4 mug ml(-1). The studies of the effect of foreign ions on determination of copper, show that the selectivity of the method is poor. The cations of alkali metals and anions Br(-), Cl(-), I(-), F(-), NO(2)(-), NO(3)(-), CH(3)COO(-), SO(4)(2-), S(2)O(3)(2-), PO(4)(3-), citrates (examined in 1000-fold molar excess over copper) do not affect the determination. All cations forming complexes with PF have an interfering effect. The statistical evaluation of the method was carried out for six determinations using 10 mug of Cu and the following results were obtained: the standard deviation, SD=0.042, the confidence interval mu(95)=10.1+/-0.1 mug Cu. The method has been applied for determination of copper in blood serum.  相似文献   

19.
Second-order rate constants, k(OH)(N), M(-)(1) s(-)(1), for the beta-elimination reactions of HF with 2-(2-fluoroethyl)pyridine (2), 3-(2-fluoroethyl)pyridine (3), and 4-(2-fluoroethyl)pyridine (4) in OH(-)/H(2)O, at 50 degrees C and mu = 1 M KCl, are = 0.646 x 10(-)(4) M(-)(1) s(-)(1), = 2.97 x 10(-)(6) M(-)(1) s(-)(1), and = 5.28 x 10(-)(4) M(-)(1) s(-)(1), respectively. When compared with the second-order rate constants for the same processes with the nitrogen-methylated substrates 1-methyl-2-(2-fluoroethyl)pyridinium iodide (5), 1-methyl-3-(2-fluoroethyl)pyridinium iodide (6), and 1-methyl-4-(2-fluoroethyl)pyridinium iodide (7), the methyl-activating factor (MethylAF) can be calculated from the ratio k(OH)(NCH)3/, and a value of 8.7 x 10(5) is obtained with substrates 5/2, a value of 1.6 x 10(3) with 6/3, and a value of 2.1 x 10(4) with 7/4. The high values of MethylAF are in agreement with an irreversible E1cb mechanism (A(N)D(E) + D(N)) for substrates 5 and 7 and with the high stability of the intermediate carbanion related to its enamine-type structure. In acetohydroxamate/acetohydroxamic acid buffers (pH 8.45-9.42) and acetate/acetic acid buffers (pH 4.13-5.13), the beta-elimination reactions of HF, with substrates 2 and 4, occur at NH(+), the substrates protonated at the nitrogen atom of the pyridine ring, even when the [NH(+)] is much lower than the [N], the unprotonated substrate, due to the high proton-activating factor (PAF) value observed: 3.6 x 10(5) for 2 and 6.5 x 10(4) for 4 with acetohydroxamate base. These high PAF values are indicative of an irreversible E1cb mechanism rather than a concerted E2 (A(N)D(E)D(N)) mechanism. Finally, the rate constant for carbanion formation from NH(+) with 2 is k(B)(NH)+ = 0.35 M(-)(1) s(-)(1), which is lower than when chlorine is the leaving group ( = 1.05 M(-)(1) s(-)(1); Alunni, S.; Busti, A. J. Chem. Soc., Perkin Trans. 2 2001, 778). This is direct experimental evidence that some lengthening of the carbon-leaving group bond can occur in the intermediate carbanion. This is a point of interest for interpreting a heavy-atom isotope effect.  相似文献   

20.
Cruywagen JJ  van de Water RF 《Talanta》1993,40(7):1091-1095
The hydrolysis of lead(II) has been investigated by potentiometric titrations (ionic medium 1.0M NaClO(4) and 1.0M KNO(3)) and enthalpimetric titrations (ionic medium 1.0M NaClO(4)) at 25 degrees . The reaction model that gave the best fit to the data for 1.0M NaClO(4) comprised the following five ions: Pb(OH)(+), Pb(3)(OH)(2+)(4), Pb(3)(OH)(+)(5), Pb(4)(OH)(4+)(4) and Pb(6)(OH)(4+)(8). The formation constants, and enthalpy changes (kJ/mol) for these species, defined according to equation (1), have the values log beta(11) = -7.8, DeltaH(0)(11) = 24; log beta(34) = -22.69, DeltaH(0)(34) = 112; log beta(35) = -30.8, DeltaH(0)(35) = 146; log beta(44) = -19.58, DeltaH(0)(44) = 86; log beta(68) = -42.43, DeltaH(0)(68) = 215. Equilibrium constants determined in nitrate medium show good agreement with those pertaining to perchlorate medium if complexation of lead(II) with nitrate is taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号