首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate quantitatively the cooperative binding ability of beta-cyclodextrin dimers, a series of bridged bis(beta-cyclodextrin)s with 2,2'-diselenobis(benzoyl) spacer connected by different lengths of oligo(ethylenediamine)s (2-5) and their platinum(IV) complexes (6-9) have been synthesized and their inclusion complexation behavior with selected substrates, such as Acridine Red, Neutral Red, Brilliant Green, Rhodamine B, ammonium 8-anilino-1-naphthalenesulfonate, and 6-p-toluidino-2-naphthalenesulfonic acid, were investigated by means of ultraviolet, fluorescence, fluorescence lifetime, circular dichroism, and 2D-NMR spectroscopy. The spectral titrations have been performed in aqueous phosphate buffer solution (pH 7.20) at 25 degrees C to give the complex stability constants (K(S)) and Gibbs free energy changes (-DeltaG degrees ) for the inclusion complexation of hosts 2-9 with organic dyes and other thermodynamic parameters (DeltaH degrees and TDeltaS degrees ) for the inclusion complexation of 2-5with fluorescent dyes ANS and TNS. The results obtained indicate that beta-cyclodextrin dimers 2-5 can coordinate with one or two platinum(IV) ions to form 1:1 or 1:2 stoichiometry metallobridged bis(beta-cyclodextrin)s. As compared with parent beta-cyclodextrin (1) and bis(beta-cyclodextrin)s 2-5, metallobridged bis(beta-cyclodextrin)s 6-9 can further switch the original molecular binding ability through the coordinating metal to orientate two beta-cyclodextrin cavities and an additional binding site upon the inclusion complexation with model substrates, giving the enhanced binding constants K(S) for both ANS and TNS. The tether length between two cyclodextrin units plays a crucial role in the molecular recognition with guest dyes. The binding constants for TNS decrease linearly with an increase in the tether length of dimeric beta-cyclodextrins. The Gibbs free energy change (-DeltaG degrees ) for the unit increment per ethylene is 0.32 kJ.mol(-)(1) for TNS. Thermodynamically, the higher complex stabilities of both ANS and TNS upon the inclusion complexation with 2-5 are mainly contributed to the favorable enthalpic gain (-DeltaH degrees ) by the cooperative binding of one guest molecule in the closely located two beta-cyclodextrin cavities as compared with parent beta-cyclodextrin. The molecular binding ability and selectivity of organic dyes by hosts 1-9 are discussed from the viewpoints of the multiple recognition mechanism and the size/shape-fitting relationship between host and guest.  相似文献   

2.
A series of bridged beta-cyclodextrin (beta-CyD) dimers possessing functional tethers of various lengths was synthesized in moderate yield by the treatment of 2,2'-biquinoline- 4,4'-dicarboxylic dichloride with beta-CyD or mono[6-oligo(ethylenediamino)-6-deoxy]-beta-CyDs. The products were 2,2'-biquinoline-4,4'-dicarboxy-bridged bis(6-O-beta-CyD) (8), N,N'-bis(2-aminoethyl)-2,2'-biquinoline-4,4'-dicarboxamide-bridged bis(6-amino-6-deoxy-beta-CyD) (9), and N,N'-bis(5-amino-3-azapentyl)-2,2'-biquinoline-4,4'-dicarboxamide-bridged bis(6-amino-6-deoxy-beta-CyD) (10). The reaction of 8-10 with copper perchlorate give their copper(II) complexes 11-13 in satisfactory yields of over 77 %. All the bis(beta-CyD)s 8-13 act as efficient fluorescent sensors and display remarkable fluorescence enhancement upon addition of optically inert steroids. The inclusion complexation behaviors of 8-13 when treated with the representative steroids cholate (14), deoxycholate (15), and glycocholate (16) in aqueous solution at 25 degrees C were investigated by means of UV/Vis spectroscopy, conductivity and fluorescence measurements, circular dichroism spectroscopy, and 2D NMR spectroscopy. The tether length of bis(beta-CyD) 9 allows it to adopt a cooperative host-tether-guest binding mode in which the spacer and guest are co-included in the two CyD cavities. As a result of this cooperation, 9 has a stability constant (K(s)) about 2x10(2) times higher than that of monomodified beta-CyD 4 for inclusion complexation with cholate. Metallooligo(beta-CyD)s with four beta-CyD units have enhanced binding abilities compared with monomodified beta-CyDs. These metallo compounds have binding affinities for guest steroids that are up to 50-4.1x10(3) times higher than those of CyDs 2-4. The guest-induced fluorescence enhancement of bis(CyD)s opens a new channel for the design of sensor materials. The complex stability constants of these compounds are discussed from the viewpoint of induced-fit interaction and cooperative multiple binding between host and guest.  相似文献   

3.
Liu Y  Chen Y  Liu SX  Guan XD  Wada T  Inoue Y 《Organic letters》2001,3(11):1657-1660
Newly synthesized bis(beta-cyclodextrin-6-yl) 2,2'-bipyridine-4,4'-dicarboxylate was found to induce an unusual fluorescence enhancement of Rhodamine B (RhB) upon complexation. This effect is attributable to the equilibium shift of RhB to the highly fluorescent carboxylate ion form, which is induced by the cooperative binding by two appropriately preorganized cyclodextrin units in the bis(beta-cyclodextrin). This sandwich complexation behavior was investigated by means of the fluorescence and 2D NMR spectroscopy.  相似文献   

4.

A series of 6,6'-bis( g -cyclodextrin)s with rigid aromatic diamino tethers, i.e. p -phenylenediamino-bridged-bis(6-amino-6-deoxy- g -cyclodextrin) ( 3 ), 4,4'-bianilino-bridged-bis(6-amino-6-deoxy- g -cyclodextrin) ( 4 ) and 3,3'-bianilino-bridged-bis(6-amino-6-deoxy- g -cyclodextrin) ( 5 ), have been synthesized by the reaction of mono[6- O -( p -toluenesulfonyl)]-( g -cyclodextrin) with corresponding materials. The inclusion complexation behavior of native g -cyclodextrin ( 1 ), mono-(6-anilino-6-deoxy)- g -cyclodextrin ( 2 ), and novel bis( g -cyclodextrin) 3 - 5 with some representative dyes, i.e. ammonium 8-anilino-1-naphthalenesulfonate (ANS), Brilliant Green, Methyl Orange, Acridine Red and Rhodamine B, was investigated at 25C in aqueous phosphate buffer solution (pH 7.20) by means of fluorescence, ultraviolet, circular dichroism spectrometry as well as fluorescence lifetime measurement. The spectrophotometric titrations gave the complex stability constants ( K S ) and Gibbs free energy changes ( j G 0 ) for the stoichiometric 1:1 inclusion complexation of hosts examined with dye molecules. As compared with 1 or 2 , bridged bis( g -cyclodextrin)s displayed significantly enhanced binding abilities towards these dyes. Typically, dimer 3 showed the highest binding ability upon inclusion complexation with acridine red affording 17 times higher K S for 3 than for 1 . The molecular binding abilities and selectivities of dyes by bridged bis( g -cyclodextrin)s have been discussed from the viewpoint of induced-fit interaction and multipoint recognition mechanism.  相似文献   

5.
To investigate quantitatively the cooperative binding ability of several beta-cyclodextrin oligomers bearing single or multiligated metal center(s), the inclusion complexation behavior of four bis(beta-cyclodextrin)s (2-5) linked by 2,2'-bipyridine-4,4'-dicarboxy tethers and their copper(II) complexes (6-9) with representative dye guests, i.e., methyl orange (MO), acridine red (AR), rhodamine B (RhB), ammonium 8-anilino-1-naphthalenesulfonic acid (ANS), and sodium 6-(p-toludino)-2-naphthalenesulfonate (TNS), have been examined in aqueous solution at 25 degrees C by means of UV-vis, circular dichroism, fluorescence, and 2D NMR spectroscopy. The results obtained indicate that bis(beta-cyclodextrin)s 2-5 can associate with one or three copper(II) ion(s) producing 2:1 or 2:3 bis(beta-cyclodextrin)-copper(II) complexes. These metal-ligated oligo(beta-cyclodextrin)s can bind two model substrates to form intramolecular 2:2 host-guest inclusion complexes and thus significantly enhance the original binding abilities of parent beta-cyclodextrin and bis(beta-cyclodextrin) toward model substrates through the cooperative binding of two guest molecules by four tethered cyclodextrin moieties, as well as the additional binding effect supplied by ligated metal center(s). Host 6 showed the highest enhancement of the stability constant, up to 38.3 times for ANS as compared with parent beta-cyclodextrin. The molecular binding mode and stability constant of substrates by bridged bis- and oligo(beta-cyclodextrin)s 2-9 are discussed from the viewpoint of the size/shape-fit interaction and molecular multiple recognition between host and guest.  相似文献   

6.
A series of novel bis(beta-cyclodextrin)s tethered with organoselenium linkers, i.e., 6,6'-(o-phenylene-diseleno)-bridged bis(beta-cyclodextrin) (2), 6,6'-[2,2'-diselenobis(benzoyloxy)]-bridged bis(beta-cyclodextrin) (3), and 6,6'-[2,2'-diselenobis[2-(benzoylamino)ethylamino]]-bridged bis(beta-cyclodextrin) (4), were synthesized from beta-cyclodextrin (1). The inclusion complexation behavior of 1-4 with some dyes, such as 8-anilinonaphthalenesulfonate (ANS), Brilliant Green, Crystal Violet, Tropaeolin OO, Auramine O, and Methyl Orange, was investigated in aqueous phosphate buffer solution (pH 7.20) at 25 degrees C by UV-vis, fluorescence, and circular dichroism spectrometry, as well as fluorescence lifetime measurements. The complex stability constants (Ks) and Gibbs free energy changes (delta Go) for the stoichiometric 1:1 inclusion complexation of 1-4 with the dyes were obtained by the spectrophotometric or spectropolarimetric titrations. The bis(beta-cyclodextrin)s 2-4 showed much higher affinities toward these guest dyes than native beta-cyclodextrin 1 with fairly good molecular selectivities. The cooperative binding abilities of these bis(beta-cyclodextrin)s are discussed from the viewpoints of size/shape-fit interaction, induced-fit concept, and multiple recognition mechanism.  相似文献   

7.
Three beta-cyclodextrin (beta-CyD) derivatives with crown ether units, that is N-(4'-benzo-15-crown-5)-6-imino-6-deoxy-beta-CyD (2), 6,6'-[N-(4,4'-dibenzo-18-crown-6)-imino]-bridged bis(beta-CyD)(3), and 2,2'-[O-(4',5'-benzo-15-crown-5)-ethyl]-bridged bis (beta-CyD)(5), were synthesized as cooperative recognition receptor models. Their molecular binding behavior with four representative fluorescent dyes, i.e., ammonium 8-anilino-1-naphthalenesulfonate (ANS), sodium-6-toluidino-2-naphthalene-sulfonate (TNS), Acridine Red (AR) and Rhodamine B (RhB), was investigated in buffer solutions (pH = 7.20) at 25 degreesC by means of circular dichroism, NMR and fluorescence spectroscopy. 2D-ROESY experiments showed that dyad host 2 and triad host 3 adopted a CyD-guest-crown ether binding mode, while triad host 5 adopted a CyD-guest-CyD binding mode, upon inclusion complexation with guest molecules. Therefore, hosts 2 and 3 showed high molecular recognition ability towards charged guests, giving an enhanced binding ability up to 115 times for ANS by 3 and fairly high molecular selectivity up to 1450 times for the ANS/AR pair by 2 as compared with native beta-CyD in an aqueous phosphate buffer solution. On the other hand, host 5 was found to be able to effectively recognize the shape of a guest molecule, showing significantly higher binding ability towards linear guests. The binding affinities and molecular recognition abilities of these CyD-crown ether conjugates towards guest molecules are discussed from the viewpoint of electrostatic and/or hydrophobic interactions, size/shape-fit concept, and multiple recognition mechanism between host and guest.  相似文献   

8.
A bis(beta-cyclodextrin)-fullerene conjugate (3) linked at the secondary hydroxyl side was prepared in a good yield from its precursor N,N'-bis(2-(2-aminoethylamino)ethyl)malonamide-bridged bis(beta-cyclodextrin) (2). Spectrophotomeric studies on the conformation and the inclusion complexation behavior of 3 with a variety of organic and biochemical substrates by means of UV-vis, FT-IR, NMR, fluorescence, and circular dichroism spectroscopy showed that the bis(beta-cyclodextrin)-fullerene conjugate displayed an intramolecular capsule-type conformation in aqueous solution. Because of the multiple binding of bis(beta-cyclodextrin) with substrates, 2 can act as an efficient fluorescence sensor for biochemical substrates, while its fullerene conjugate 3 displays a capability of cleaving DNA under visible-light irradiation.  相似文献   

9.
The complex stability constants (K(S)), standard molar enthalpy (DeltaH degrees), and entropy changes (DeltaS degrees) for the inclusion complexation of two families of beta-cyclodextrin (beta-CD) dimers, i.e. beta-CD dimers Se1-Se4 bearing 2,2'-diselenobis(benzoyl) tether (Se-dimers) and beta-CD dimers Py1-Py4 bearing 2,2'-bipyridine-4,4'-dicarboxy tether (Py-dimers), with four bile salt guests, i.e. sodium cholate (CA), sodium deoxycholate (DCA), sodium glycocholate (GCA), and sodium taurocholate (TCA), were determined at 25 degrees C in Tris buffer solution (pH 7.4) at 298.15 K by means of isothermal titration microcalorimetry. The thermodynamic parameters obtained, together with the ROESY spectra of interactions between beta-CD dimers and bile salts, consistently suggest that the length, flexibility, and structure of spacers linking the two beta-CD cavities not only determine the binding modes but also significantly alter the molecular selectivity of beta-CD dimers.  相似文献   

10.
A series of beta-cyclodextrin (beta-CD) dimers with 4,4'-diselenobis(benzoyl) linkers, that is, 6,6'-[4,4'-diselenobis(benzoyloxyl)]-bridged bis(beta-CD) (1a), 6,6'-[4,4'-diselenobis[2-(benzoylamino)ethyleneamino]]-bridged bis(beta-CD) (2a), and 6,6'-[4,4'-diselenobis[2-(benzoylamino)-3,6-diazaoctylamino]]-bridged bis(beta-CD) (3a), were synthesized in moderate yields by the reaction of 4,4'-diselenobis(benzoic acid) with beta-CD or oligo(ethylenediamino)-6-deoxy-beta-CD. Their binding behaviors with some structure-related substrates, such as acridine red (AR), neutral red (NR), rhodamine B (RhB), ammonium 8-anilino-1-naphthalenesulfonate (ANS), and 6-p-toluidino-2-naphthalenesulfonic acid (TNS), were investigated in aqueous phosphate buffer solution (pH 7.20) at 298.15 K by means of fluorescence, NMR, as well as circular dichroism spectroscopy and compared with those of their 2,2'-diselenobis(benzoyl)-linked analogues, that is, 6,6'-[2,2'-diselenobis(benzoyloxyl)]-bridged bis(beta-CD) (1b), 6,6'-[2,3'-diselenobis[2-(benzoylamino)ethyleneamino]]-bridged bis(beta-CD) (2b), and 6,6'-[2,2'-diselenobis[2-(benzoylamino)-3,6-diazaoctylamino]]-bridged bis(beta-CD) (3b). The results showed that bis(beta-CD)s 1a-3a, whose Se-Se bonds were located at the para position of the carboxyl group, gave stronger binding abilities toward nonlinear guests (RhB and ANS) than their analogues 1b-3b, whose Se-Se bonds were located at the ortho position relative to the carboxyl group. The molecular binding ability and selectivity of model substrates by these ditopic hosts were sufficiently discussed to reveal not only the cooperative contributions of the linker group and CD cavities upon inclusion complexation with dye guest molecules but also the controlling factors for the molecular selective binding.  相似文献   

11.
A series of bridged bis(beta-cyclodextrin(CD))s (2-7) were synthesized, i.e., bridged bis(beta-CD)s 2 and 3 bearing binaphthyl or biquinoline tethers and bridged bis(beta-CD)s 4-7 possessing dithiobis(benzoyl) tether, and their complex stability constants (KS), enthalpy (DeltaH degrees), and entropy changes (DeltaS degrees) for the 1:2 inclusion complexation with representative steroids, deoxycholate, cholate, glycocholate, and taurocholate, have been determined in an aqueous phosphate buffer solution of pH 7.20 at 298.15 K by means of titration microcalorimetry. The original conformations of bridged bis(beta-cyclodextrin)s were investigated by circular dichroism and 1H ROESY spectroscopy. Structures of the inclusion complexes between steroids and bridged bis(beta-CD)s in solution were elucidated by 2D NMR experiments, indicating that anionic groups of two steroid molecules penetrate, respectively, into the two hydrophobic CD cavities in one 6,6'-bridged bis(beta-CD) molecule from the secondary rim to give a 1:2 binding mode upon inclusion complexation. The results obtained from titration microcalorimetry and 2D NMR experiments jointly demonstrate that bridged bis(beta-CD)s 2, 3 and 5-7 tethered by protonated amino group possessing different substituted groups can enhance not only the molecular binding ability toward steroids by electrostatic interaction but also molecular selectivity. Thermodynamically, the resulting 1:2 bis(beta-CD)-steroid complexes are formed by an enthalpy-driven process, accompanied by smaller entropy loss. The increased complex stability mainly results from enthalpy gain, accompanied by large conformational change and extensive desolvation effects for the 1:2 inclusion complexation between bis(beta-CD)s and steroids.  相似文献   

12.
Two channel-type supramolecular aggregations 1 and 2 were prepared by the inclusion complex of beta-cyclodextrin with 2,2'-dipyridine and 4,4'-dipyridine, respectively, and their binding ability and assembly behavior were investigated comprehensively by X-ray crystallography, (1)H NMR, circular dichroism spectra, and microcalorimetric titration in solution and the solid state. The obtained results revealed that the hydrogen bonds and pi-pi stacking interactions are crucial factors for the formation of the molecular aggregations containing beta-cyclodextrin and dipyridines. The disparity of nitrogen atom position in dipyridines leads not only to the distinct crystal system and space group, i.e., monoclinic system (C2) for 1 and triclinic system (P-1) for 2, but also different binding modes and thermodynamical parameters upon complexation of 2,2'-dipyridine and 4,4'-dipyridine with beta-cyclodextrin in aqueous solution.  相似文献   

13.

Two novel g -cyclodextrin derivatives bearing a (1-naphthyloxamino)-ethyleneamino ( 4 ) or (1-naphthyloxamino)-diethylenediamino ( 5 ) moiety have been synthesized by a convenient method in 34% and 30% yields, respectively. Examinations of the circular dichroism (CD) spectra and fluorescence lifetime revealed that the naphthyloxamino-oligo (ethyleneamino) moiety tethered to g -cyclodextrin is not deeply embedded in the hydrophobic cavity of g -cyclodextrin itself even in the absence of a guest. The inclusion complexation behavior of 4 and 5 with some fluorescent dyes, i.e. ammonium 8-anilino-1-naphthalenesulfonate (ANS), sodium 2-( p -toluidinyl)naphthalenesulfonate (TNS), Acridine Red (AR) and Rhodamine B (RhB), was assessed in aqueous phosphate buffer solution (pH 7.2) at 25C by fluorometric titration to give the complex stability constants ( K S ) and Gibbs free energy changes ( j G 0 ) for the stoichiometric 1:1 inclusion complexation with the fluorescent dyes. The results obtained indicate that the naphthyloxamino-oligo(ethyleneamino) moiety attached to the g -cyclodextrin ( 1 ) can alter not only the original molecular binding-ability of the parent g -cyclodextrin, but also the molecular selectivity through the micro-environment changes of cyclodextrin cavity, which are discussed from the viewpoints of the size/shape-fit concept and the stereochemical complementary relationship between host cyclodextrin and model substrate.  相似文献   

14.
Complex stability constants (KS), standard molar enthalpic changes (DeltaH degrees ), and entropic changes (TDeltaS degrees ) for the inclusion complexations of native beta-cyclodextrin (1) and two oppositely charged beta-cyclodextrins, i.e., mono(6-amino-6-deoxy)- beta-cyclodextrin (2) and mono[6-O-6-(4-carboxylphenyl)]- beta-cyclodextrin (3), with two (ferrocenylmethyl)dimethylaminium derivatives, i.e., FC4+Br(-) and FC8+Br(-), were determined at 25 degrees C in aqueous phosphate buffer solution (pH 7.20) by means of isothermal titration microcalorimetry (ITC). Cyclic voltammetry studies showed that the ferrocene groups of the guests were included in the beta-cyclodextrin cavity to form host-guest complexes. As compared with neutral beta-cyclodextrin, the positively charged host 2 showed decreased binding toward (ferrocenylmethyl)dimethylaminium guests. This was attributed to electrostatic repulsion, while the negatively charged host 3 displayed increased binding due to electrostatic attractions. Thermodynamically, the ionization of host CDs affects both enthalpic and entropic changes of host-guest complexations presumably by changing the hydrophobicity and the desolvation effect of hosts upon inclusion complexation. Moreover, the solvent effect was also discussed from the viewpoint of thermodynamics.  相似文献   

15.
A series of beta-cyclodextrin (beta-CD) dimers containing fluorescent 2,2'-oxamidobisbenzoyl and 4,4'-oxamidobisbenzoyl linkers--that is, 6,6'-[2,2'-oxamidobis(benzoylamino)]ethyleneamino-6,6'-deoxy-bis(beta-CD) (2), 6,6'-[2,2'-oxamidobis(benzoylamino)]diethylenediamino-6,6'-deoxy-bis(beta-CD) (3), 6,6'-[4,4'-oxamidobis(benzoylamino)]ethyleneamino-6,6'-deoxy-bis(beta-CD) (4), and 6,6'-[4,4'-oxamidobis(benzoylamino)]diethylenediamino-6,6'-deoxy- bis(beta-CD) (5)--were synthesized from the corresponding oxamidobis(benzoic acid)s through treatment with mono[6-aminoethyleneamino-6-deoxy]-beta-CD or mono[6-diethylenetriamino-6-deoxy]-beta-CD. Further treatment of 2-5 with copper perchlorate gave their Cu(II) complexes 6-9 in satisfactory yields. The conformation and binding behavior of 2-9 towards two bile salt guests--sodium cholate (CA) and sodium deoxycholate (DCA)--was comprehensively investigated by circular dichroism, 2D NMR spectroscopy, and fluorescence spectroscopy in Tris-HCl buffer solution (pH 7.2) at 25 degrees C. Thanks to the cooperative host-linker-guest binding mode, the stoichiometric 1:1 complexes formed by bis(beta-CD)s 2-5 with bile salts gave high stability constants (KS values) of up to 10(3)-10(4) M(-1). Significantly, benefiting from the intramolecular 1:2 or 2:4 binding stoichiometry, the resulting complexes of metallobis(beta-CD)s 6-9 with bile salts gave much higher KS values of up to 10(6)-10(7) M(-2). The enhanced binding abilities of bis(beta-CD)s and metallobridged bis(beta-CD)s are discussed from the viewpoints of induced-fit interactions and multiple recognition between host and guest.  相似文献   

16.
宋芸  刘育 《化学学报》2005,63(2):103-108
采用荧光光谱滴定的方法测定了一系列联喹啉桥联双环糊精在磷酸缓冲溶液中(25 ℃, pH=7.2)与几种染料客体分子形成化学计量比为1∶1的超分子配合物的稳定常数. 结果表明, 拥有刚性和大(电子体系的联喹啉桥联双环糊精比相应的联吡啶桥联双环糊精对三角形的RhB分子和线形的AR分子具有更强的分子键合能力. 二维核磁的研究证实, 桥联双环糊精对客体分子强的键合能力起源于在一个分子内两个环糊精单元的协同键合. 桥联双环糊精对染料客体分子的选择键合能力从主-客体间的尺寸/形状匹配以及几种弱相互作用力的协同效应进行了讨论.  相似文献   

17.
Structural control of Schiff base ligands for selective extraction of copper(II) was investigated by changing pendant arms and the distance between two imine-N donor atoms in ligands. Di-Schiff base ligands, N,N'-bis(2-quinolylmethylidene)-1,2-diiminoethane (BQIE), N,N'-bis(2-pyridylmethylidene)-1,3-diimino-2,2-dimethylpropane (BPMP) and N,N'-bis(2-quinolylmethylidene)-1,3-diimino-2,2-dimethylpropane (BQMP), were used as complexation reagents for ion-pair extraction of divalent transition metal cations into nitrobenzene with picrate anion. The pendant arms affected the lipophilicity of ligand to nitrobenzene, due to their polarity. The distance between two imine-N atoms, on the contrary, was a factor of controlling the extraction selectivity. BQMP has both 2-quinolyl pendant arms and trimethylene backbone structure; use of BQMP as a complexation reagent led to the selective extraction of Cu2+ in the system.  相似文献   

18.
Two novel phosphoryl-bridged bis- and tris(beta-cyclodextrin)s of different tether lengths, i.e., bis[m-(N-(6-cyclodextryl)-2-aminoethylaminosulfonyl)phenyl]-m-(chlorosulfonyl)phenylphosphine oxide (5) and tris[m-(N-(6-cyclodextryl)-8-amino-3,6-diazaoctylaminosulfonyl)phenyl]phosphine oxide (6), have been synthesized by reactions of 6-oligo(ethylenediamino)-6-deoxy-beta-cyclodextrins with tris[m-(chlorosulfonyl)phenyl]phosphine oxide. The complex stability constants (K(S)), standard molar enthalpy (Delta H degrees ), and entropy changes (Delta S degrees ) were determined at 25 degrees C for the inclusion complexation of phosphoryl-modified bis- and tris-cyclodextrins (5 and 6, respectively), mono[6-O-(ethoxyhydroxyphosphoryl)]-beta-cyclodextrin (2), mono[6-O-(diethylamino-ethoxyphosphoryl)]-beta-cyclodextrin (3), and mono[6-O-(diphenoxyphosphoryl)]-beta-cyclodextrin (4) with representative alicyclic and N-Cbz-D/L-alanine guests in 0.1 M phosphate buffer solution at pH 7.2 by means of titration microcalorimetry. The thermodynamic parameters obtained indicate that the charge-dipole interaction between the phosphoryl moiety and the negatively charged guests, as well as the conformational difference of modified beta-cyclodextrins in aqueous solution, significantly contribute to the inclusion complexation and the enhanced chiral discrimination. The interactions and binding modes between the hosts and chiral guests were further studied by two-dimensional NMR spectroscopy to elucidate the influence of the structural features of hosts on their increased chiral recognition ability and to establish the correlation between the conformation of the resulting complexes and the thermodynamic parameters obtained.  相似文献   

19.
A novel bridged bis(β-cyclodextrin),m-phenylenediimino-bridged bis(6-imino-6-deoxy-β-cyclodextrin) (2), was synthesized by the reaction of m-phenylenediamine and 6-deoxy-6-formyl-β-cyclodextrin. The inclusion complexation behavior of the novel bridged bis(β-cyclodextrin) 2,as well as native β-cyclodextrin (1),p-phenylenediamino-bridged bis(6-amino-6-deoxy-β-cyclodextrin) (3) and 4,4'-bianilino-bridged bis(6-amino-6-deoxy-β-cyclodextrin) (4) with representative fluorescent dye molecules, i.e., acridine red (AR), neutral red (NR), Rhodamine B (RhB), ammonium 8-anilino-1-naphthalenesulfonate (ANS) and sodium 6-toluidino-2-naphthalenesulfonate (TNS), was investigated at 25 °C in aqueous phosphate buffer solution (pH 7.20) by means of fluorescence, and circular dichroism, as well as 2D NMR spectrometry. The spectrofluorometric titrations have been performed to calculate the complex stability constants (KS) and Gibbs free energy changes (Δ G°) for the stoichiometric 1 : 1 inclusion complexation of 1–4 with fluorescent dye molecules. The results obtained demonstrated that bis(β-cyclodextrin)s 2–4 showed much higher affinities toward these guest dyesthan native β-cyclodextrin 1. Typically, dimer 2 displayed the highest binding ability upon inclusion complexation with ANS, affording 35 times higher KS value than native β-cyclodextrin. The significantlyenhanced binding abilities of these bis(β-cyclodextrin)s are discussed from thebinding mode and viewpoints of size/shape-fit concept and multiple recognition mechanism.  相似文献   

20.
Li Li  Song He  Yu Liu 《中国化学》2003,21(7):964-969
A novel β‐cyclodextrin dimer, 2, 2′‐o‐phenylenediseleno‐bridged bis (β‐cyclodextrin) (2), has been synthesized by reaction of mono‐[2‐O‐(p‐tolylsulfonyl)]‐β‐cyclodextrin and poly(o‐phenylenediselenide). The complexation stability constants (K2) and Gibbs free energy changes (‐ΔG°) of dimer 2 with four fluorescence dyes, that is, ammonium 8‐anilino‐1‐naphthalenesulfonate (ANS), sodium 6‐(p‐toluidino)‐2‐naphthalenesulfonate (TNS), Acridine Red (AR) and Rhodamine B (RhB) have been determined in aqueous phosphate buffer solution (pH = 7.2, 0.1 mol‐L?1) at 25 °C by means of fluorescence spectroscopy. Using the present results and the previously reported corresponding data of β‐cyclodextrin (1) and 6, 6′‐o‐phenylenediseleno‐bridged bis (β‐cyclodextrin) (3), binding ability and molecular selectivity are compared, indicating that the bis (β‐cyclodextrin)s 2 and 3 possess much higher binding ability toward these dye molecules than parent β‐cyclodextrin 1, but the complex stability constant for 2 linked from the primary side is larger than that of 3 linked from the secondary side, which is attributed to the more effective cooperative binding of two hydrophobic cavities of host 3 and the size/shape‐fit relationship between host and guest. The binding constant (K2,) upon inclusion complexation of host 3 and AR is enhanced by factor of 27.3 as compared with that of 1. The 2D 1H NOESY spectrum of host 2 and RhB is performed to confirm the binding mode and explain the relative weak binding ability of 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号