首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By considering the Kane-Mele-Hubbard approximation on the honeycomb lattice, we investigate the spin-spin correlation for two magnetic impurities in zigzag edge silicene-like nanoflake (ZSiLF). The dependence of the spatial behaviors of RKKY interaction on the electron-electron (e-e), intrinsic spin-orbit interactions (ISOI) and, electric field are systematically investigated. Generally, the spatial behaviors of the RKKY interaction sensitively change by changing e-e interaction and electric field strengths in the presence of ISOI. The ISOI in a ZSiLF result in long-range in-plane and Ising interactions. Moreover, e-e interaction induces non-zero Dzyaloshinsky-Moriya (DM) term and nearly distance-independent Ising interaction (similar to graphene nanoflake) in the presence of ISOI. Furthermore, with considering e-e interaction, the in-plane DM interaction increases by increasing the strengths of the electric field and ISOI.  相似文献   

2.
We study RKKY interactions between local magnetic moments for both doped and undoped graphene. In the former case interactions for moments located on definite sublattices fall off as 1/R2, whereas for those placed at interstitial sites they decay as 1/R3. The interactions are primarily (anti)ferromagnetic for moments on (opposite) equivalent sublattices, suggesting that at low temperature dilute magnetic moments embedded in graphene can order into a state analogous to that of a dilute antiferromagnet. In the undoped case we find no net magnetic moment in the ground state, and demonstrate numerically this effect for ribbons, suggesting the possibility of an unusual spin-transfer device.  相似文献   

3.
We investigate Friedel Oscillations (FO) surrounding a point scatterer in graphene. We find that the long-distance decay of FO depends on the symmetry of the scatterer. In particular, the FO of the charge density around a Coulomb impurity show a faster, δρ∼1/ r3, decay than in conventional 2D electron systems. In contrast, the FO of the exchange field which surrounds atomically sharp defects breaking the hexagonal symmetry of the honeycomb lattice decay according to the 1/r2 law. We discuss the consequences of these findings for the temperature dependence of the resistivity of the material and the RKKY interaction between magnetic impurities.  相似文献   

4.
We study the indirect exchange interaction, named Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between localized magnetic impurities in graphene nanoflakes with zig-zag edges in the presence of the Rashba spin-orbit interaction (RSOI). We calculate the isotropic and anisotropic RKKY amplitudes by utilizing the tight-binding (TB) model. The RSOI, as a gate tunable variable, is responsible for changes of the RKKY amplitude. We conclude that there is not any switching of the magnetic order (from ferro- to antiferro-magnetic and vice versa) in such a system through the RSOI. The dependence of the RKKY amplitude on the positions of the magnetic impurities and the size of the system is studied. The symmetry breaking, which can occur due to the Rashba interaction, leads to spatial anisotropy in the RKKY amplitude and manifests as collinear and noncollinear terms. Our results show the possibility of control and manipulation of spin correlations in carbon spin-based nanodevices.  相似文献   

5.
We study the Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction in doped armchair graphene nanoribbon. The effects of both external magnetic field and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments has been analyzed. It has been shown that a magnetic field along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain both transverse and longitudinal static spin susceptibilities of armchair graphene nanoribbon in the presence of electron-phonon coupling and magnetic field. The spin susceptibility components are calculated using the spin dependent Green’s function approach for Holstein model Hamiltonian. The effects of spin polarization on the dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of magnetic field on the spatial behavior of in-plane and longitudinal RKKY interactions are different in the presence of magnetic field.  相似文献   

6.
Using the Hubbard model in the framework of the tight-binding formulation, we studied the effects of the electron–electron (e–e) interaction on the indirect magnetic exchange coupling between the magnetic impurities embedded in triangular graphene nanoflakes. The results show that the magnitude of the coupling enhances in the presence of the e–e interaction and Rashba spin–orbit interaction (RSOI). The RKKY coupling magnitude depends on the impurity positions in nanoflake and the size of the system, as well.  相似文献   

7.
We measure transport through gold grain quantum dots fabricated using electromigration, with magnetic impurities in the leads. A Kondo interaction is observed between dot and leads, but the presence of magnetic impurities results in a gate-dependent zero-bias conductance peak that is split due to a RKKY interaction between the spin of the dot and the static spins of the impurities. A magnetic field restores the single Kondo peak in the case of an antiferromagnetic RKKY interaction. This system provides a new platform to study Kondo and RKKY interactions in metals at the level of a single spin.  相似文献   

8.
We study the effects of the RKKY interaction between magnetic impurities on the mesoscopic conductance fluctuations of a metal ring with dilute magnetic impurities. At sufficiently low temperatures and strong magnetic fields, the loss of electron coherence occurs mainly due to the scattering off rare pairs of strongly coupled magnetic impurities. We establish a relation between the dephasing rate and the distribution function of the exchange interaction within such pairs. In the case of the RKKY exchange interaction, this rate exhibits 1/B(2) behavior in strong magnetic fields. We demonstrate that the Aharonov-Bohm conductance oscillations may be used as a probe of the distribution function of the exchange interaction between magnetic impurities in metals.  相似文献   

9.
We calculate the screening function in bilayer graphene (BLG) in both the intrinsic (undoped) and the extrinsic (doped) regimes within the random phase approximation, comparing our results with the corresponding single layer graphene and the regular two-dimensional electron gas. We find that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY interaction, which are associated with the nonanalytic behavior of the screening function at q=2k(F). We find that the Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all qualitatively different in the BLG compared with the single layer graphene and the two-dimensional electron gas.  相似文献   

10.
Compensation behaviors, magnetic susceptibilities and the phase diagrams of the ternary system of the type ABC consisting of Ising spins σ = 1/2, S = 3/2 and m = 5/2 in the presence of a single-ion anisotropy are studied on the Bethe lattice within the framework of the exact recursion relations. Both ferromagnetic and antiferromagnetic exchange interactions are considered. The exact expressions for sublattice magnetizations and magnetic susceptibilities are obtained, and then thermal behaviors of the sublattice magnetizations, total magnetization, magnetic sublattice susceptibilities and total susceptibility are investigated. We find that the system only undergoes a second order phase transition for the different and same bilinear nearest-neighbor exchange interaction parameters, but displays compensation behaviors for only different bilinear interaction parameters. We also present the phase diagrams for the different and same bilinear nearest-neighbor exchange interaction parameters. A comparison is made with the other ternary system of the type ABC consisting of different spin values.  相似文献   

11.
We develop a lattice mean field theory for ferromagnetic ordering in diluted magnetic semiconductors by taking into account the spatial fluctuations associated with random disorder in the magnetic impurity locations and the finite mean free path associated with low carrier mobilities. Assuming a carrier-mediated indirect RKKY exchange interaction among the magnetic impurities, we find substantial deviation from the extensively used continuum Zener model Weiss mean field predictions. Our theory allows accurate analytic predictions for Tc and provides simple explanations for a number of observed anomalies, including the non-Brillouin function magnetization curves, the suppressed low-temperature magnetization saturation, and the dependence of Tc on conductivity.  相似文献   

12.
We establish a model to investigate the effect of clustering of impurities on the ferromagnetism in dilute magnetic semiconductors (DMS). The Curie temperature Tc is calculated by the mean-field theory on a lattice with randomly distributed clusters of magnetic impurities which are interacting with each other by carrier mediated RKKY exchange coupling together with the nearest-neighbor (NN) direct exchange interaction. We consider different types and sizes of the clusters and find that the clustering of impurities can either enhance or reduce Tc, depending on the type and strength of the NN exchange interaction. If the NN interaction is antiferromagnetic and strong compared with the RKKY interaction, the clustering will reduce Tc. On the other hand, if it is ferromagnetic interaction or weak antiferromagnetic one, the clustering can enhance Tc. The trend of enhancing Tc is magnified if the average size of clusters increases. The clustering also changes the distribution of polarizations of impurities. The obtained results provide natural explanations on the fact that the ferromagnetism of DMS samples depends on the preparing and annealing processes even though the density of the magnetic impurities is kept the same.  相似文献   

13.
We study the Ruderman-Kittle-Kasuya-Yosida (RKKY) interaction in doped armchair nanotube in the presence of gap parameter. The effects of both next nearest neighbor hopping parameter and electron-Holstein phonon on RKKY interaction have been addressed. RKKY interaction as a function of distance between localized moments have been analyzed. In order to calculate the exchange interaction along arbitrary direction between two magnetic moments, we should obtain the transverse static spin susceptibility of armchair graphene nanoribbon in the presence of electron-phonon coupling and gap parameter. The spin susceptibility components are calculated using Green’s function approach for Holstein model Hamiltonian. The effects of electron doping on dependence of exchange interaction on distance between moments are investigated via calculating correlation function of spin density operators. Our results show the influences of next nearest neighbor hopping parameter on the spatial behavior of RKKY interactions are different in the presence of electron phonon coupling.  相似文献   

14.
Indirect exchange interaction between two magnetic external atoms, named by Ruderman–Kittle–Kasuya–Yosida (RKKY) interaction, has been presented in the staggered armchair graphene nanoribbon. We have studied RKKY interaction as a function of distance between localized moments. It has been shown that a magnetic ordering along the z-axis mediates an anisotropic interaction which corresponds to a XXZ model interaction between two magnetic moments. The static spin susceptibility components of armchair graphene nanoribbon have been calculated to find exchange interaction between arbitrary components of magnetic moments. We have exploited Green’s function approach in order to calculate spin susceptibility components of electronic gas in nanoribbon structure in the context of tight binding model Hamiltonian. The effects of parameter and ribbon width on the dependence of exchange interaction on distance between moments are investigated. Our results show the spin polarization along perpendicular to the plane leads to anisotropic behavior for exchange interaction between the two magnetic moments. In other words the spatial behavior of RKKY interaction between longitudinal components of magnetic moments is different from that of transverse components.  相似文献   

15.
We consider ferromagnetism in spatially randomly located magnetic moments, as in a diluted magnetic semiconductor, coupled via the carrier-mediated indirect exchange RKKY interaction. We obtain, via Monte Carlo calculations, the magnetic phase diagram as a function of the impurity moment density n(i) and the relative carrier concentration n(c)/n(i). As evidenced by the diverging correlation length and magnetic susceptibility, the boundary between ferromagnetic and nonferromagnetic phases constitutes a line of zero temperature critical points which can be viewed as a magnetic percolation transition. In the dilute limit, we find that bulk ferromagnetism vanishes for n(c)/n(i) >0.1. We also incorporate the local antiferromagnetic direct superexchange interaction between nearest neighbor impurities and examine the impact of a damping factor in the RKKY range function.  相似文献   

16.
We examine the exchange Hamiltonian for magnetic adatoms in graphene with localized inner shell states. On symmetry grounds, we predict the existence of a class of orbitals that lead to a distinct class of quantum critical points in graphene, where the Kondo temperature scales as TK∝|J-Jc|1/3 near the critical coupling Jc, and the local spin is effectively screened by a super-Ohmic bath. For this class, the RKKY interaction decays spatially with a fast power law ~1/R7. Away from half filling, we show that the exchange coupling in graphene can be controlled across the quantum critical region by gating. We propose that the vicinity of the Kondo quantum critical point can be directly accessed with scanning tunneling probes and gating.  相似文献   

17.
The spin and charge correlations induced in the conduction electron sea by the presence of a spin-1=2 magnetic impurity are investigated for one-dimensional electrons. For correlated conduction electrons, the RKKY interaction between magnetic impurities exhibits only a slow algebraic decay with distance. Increasing the exchange coupling between conduction electrons and magnetic impurity leads to a competition between the RKKY interaction and the Kondo effect. For a two-impurity model, we study the influence of the electronic correlations on this competition. Furthermore, the Kondo screening cloud and the local spin susceptibility far away from a magnetic impurity are discussed.  相似文献   

18.
We analyze the interactions between two Kondo quantum dots connected to a Rashba-active quantum wire. We find that the Kondo-doublet interaction, at an interdot distance of the order of the wire Fermi length, is over an order of magnitude greater than the RKKY interaction. The effects induced on the Kondo-doublet interaction by the wire spin-orbit coupling can be used to control the quantum dots spin-spin correlation. These results imply that the widely used assumption that the RKKY is the dominant interaction between Anderson impurities must be revised.  相似文献   

19.
We study the magnetic quantum phase transition in an anisotropic Kondo lattice model. The dynamical competition between the RKKY and Kondo interactions is treated using an extended dynamic mean field theory appropriate for both the antiferromagnetic and paramagnetic phases. A quantum Monte Carlo approach is used, which is able to reach very low temperatures, of the order of 1% of the bare Kondo scale. We find that the finite-temperature magnetic transition, which occurs for sufficiently large RKKY interactions, is first order. The extrapolated zero-temperature magnetic transition, on the other hand, is continuous and locally critical.  相似文献   

20.
First-principles calculations were performed to investigate magnetic phenomena in surface reactions involving O(2). We present two magnetized surface cases: (1) oxidation of paramagnetic Ag, and magnetic properties of the high coverage oxide phase, which correspond to a magnetic impurity superlattice on paramagnetic surfaces and (2) oxidation of ferromagnetic Pt, represented by the Pt layer on M (M = Fe and Co) relevant to the oxidation reduction reaction (ORR) on Pt, in relation to both fundamental and application interests. In the first case, we found that the dissociative adsorption of O(2), resulting in oxide phases in Ag(111), reveals interesting magnetic interactions. We note that the magnetic states are induced by the ferromagnetic superexchange interactions and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Specifically, the superlattice structures with short O-O distances have an effective ferromagnetic superexchange and RKKY interaction. In the second case, we found that a magnetic moment is induced on the Pt layer by the M substrate. The spin polarization of Pt-d states is due to hybridization with M-d states. The d-band center (ε(d)) of Pt (on M), is shifted downwards with respect to pure Pt. However, because of the spin polarization, the otherwise filled spin-down d(zz) orbital in paramagnetic pure Pt is shifted towards the Fermi level. This promotes π(z↑)-d(zz↓) interactions, which influences the O(2)-Pt interaction at O(2) far from the surface. Details and mechanisms of these two magnetic phenomena are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号