首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Horikis TP  Kath WL 《Optics letters》2006,31(23):3417-3419
A finite-difference approach based upon the immersed interface method is used to analyze the mode structure of Bragg fibers with arbitrary index profiles. The method allows general propagation constants and eigenmodes to be calculated to a high degree of accuracy, while computation times are kept to a minimum by exploiting sparse matrix algebra. The method is well suited to handle complicated structures comprised of a large number of thin layers with high-index contrast and simultaneously determines multiple eigenmodes without modification.  相似文献   

2.
Virtually all electromagnetic waveguiding structures support a multiplicity of modes. Nevertheless, to date, an experimental method for unique decomposition of the fields in terms of the component eigenmodes has not been realized. The fundamental problem is that all current attempts of modal decomposition do not yield phase information. Here we introduce a noninterferometric approach to achieve modal decomposition of the fields at the output of a general waveguiding structure. The technique utilizes a mapping of the two-dimensional field distribution onto the one-dimensional space of waveguide eigenmodes, together with a phase-retrieval algorithm to extract the amplitudes and phases of all the guided vectorial modes. Experimental validation is provided by using this approach to examine the interactions of 16 modes in a hollow-core photonic-band gap fiber.  相似文献   

3.
Wave propagation through curved bends in integrated optical waveguides is governed by the evanescent field and the radiation loss of the eigenmodes. Since these parameters are influenced by the refractive index of the surrounding medium, circular bends in rib waveguides have been successfully employed as chemical sensors for liquids and gases. In this paper the electromagnetic field, the refractive index and the radiation loss of the eigenmodes are precisely determined by a fully vectorial approach based on the method of lines. An axial discretization and Bessel functions of complex order are employed for the rigorous computation of the evanescent field. The intensity distributions of the first modes in a rib waveguide are presented. The influence of the rib height on the sensitivity of the modal index to the refractive index of the surrounding medium is investigated. The results are useful for the optimization of the sensor design.  相似文献   

4.
This paper deals with strategies for computing efficiently the propagation of sound waves in ducts containing passive components. In many cases of practical interest, these components are acoustic cavities which are connected to the duct. Though standard Finite Element software could be used for the numerical prediction of sound transmission through such a system, the method is known to be extremely demanding, both in terms of data preparation and computation, especially in the mid-frequency range. To alleviate this, a numerical technique that exploits the benefit of the FEM and the BEM approach has been devised. First, a set of eigenmodes is computed in the cavity to produce a numerical impedance matrix connecting the pressure and the acoustic velocity on the duct wall interface. Then an integral representation for the acoustic pressure in the main duct is used. By choosing an appropriate Green?s function for the duct, the integration procedure is limited to the duct–cavity interface only. This allows an accurate computation of the scattering matrix of such an acoustic system with a numerical complexity that grows very mildly with the frequency. Typical applications involving Helmholtz and Herschel–Quincke resonators are presented.  相似文献   

5.
Part I of this paper presents a self-contained analytical framework for determining the vibro-acoustic response of a plate to a large class of random excitations. The wavenumber approach is used, which provides an insight into the physical properties of the panel response and enables us to evaluate efficiently the validity of several simplifying assumptions. This formulation is used in Part II for predicting the statistical response of an aircraft panel excited by a turbulent boundary layer. In this paper, we first provide a general statement of the problem and describe how the spectral densities of the panel response can be obtained from an analysis of the system response to a harmonic deterministic excitation and a statistical model for the forcing field. The harmonic response of the system is then expanded as a series of the eigenmodes of the fluid-loaded panel and these fluid-loaded eigenmodes are approximated by a perturbation method. Then, we evaluate the conditions under which this series simplifies into a classical modal formulation in terms of the in vacuo eigenmodes.To illustrate the use of a wavenumber approach, we consider three examples, namely, the vibro-acoustic response of a panel excited by an incidence diffuse acoustic field, by a fully developed turbulent flow and by a pressure field which is spatially uncorrelated from one point to another. Convergence properties of the modal formulations are also examined.  相似文献   

6.
具有突变结构开放腔的矩阵分析   总被引:1,自引:0,他引:1       下载免费PDF全文
刘迎辉  李宏福  李浩  王峨锋  徐勇  王晖  王丽 《物理学报》2006,55(4):1718-1723
利用模式展开与场匹配原理,建立了突变波导的散射矩阵(S参数矩阵),在此基础上分析研究了具有突变结构的波导开放式谐振腔,并由矩阵级联建立了开放腔总的S参数矩阵.通过Matlab编制计算程序对具有多级突变结构的开放式输出腔进行了数值计算和分析,并通过与实验数据和软件模拟的结果比较对该方法得到的数据结果进行了验证. 关键词: 回旋管 开放式谐振腔 突变结构 S参数矩阵  相似文献   

7.
We investigate coupled optical interface modes in Thue-Morse (TM) dielectric superlattices composed of two kinds of materials with frequency-dependent dielectric functions. Four basic transfer matrices are derived in the dielectric continuum approximation. By a standard matrix operation method, the trace map of the global transfer matrix in this configuration is obtained. Under Born-von Kármán boundary conditions, the frequency spectra are calculated and their branching rules together with the quartet property are elucidated. It is further proved rigorously that nearly all eigenmodes in this framework have extended nature. The quartet of the eigenmodes is illuminated analytically. The common features and pronounced differences compared with coupled optical interface modes in periodic and Fibonacci dielectric superlattices as well as with other collective elementary excitations in TM structures are also revealed. Received 24 September 2002 / Received in final form 11 January 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: gjin@nju.edu.cn  相似文献   

8.
This paper reports a detailed study of modal reduction based on either linear normal mode (LNM) analysis or proper orthogonal decomposition (POD) for modeling a single α-d-glucopyranose monomer as well as a chain of monomers attached to a moving atomic force microscope (AFM) under harmonic excitations. Also a modal reduction method combining POD and component modal synthesis is developed. The accuracy and efficiency of these methods are reported. The focus of this study is to determine to what extent these methods can reduce the time and cost of molecular modeling and simultaneously provide the required accuracy. It has been demonstrated that a linear reduced order model is valid for small amplitude excitation and low frequency excitation. It is found that a nonlinear reduced order model based on POD modes provides a good approximation even for large excitation while the nonlinear reduced order model using linear eigenmodes as the basis vectors is less effective for modeling molecules with a strong nonlinearity. The reduced order model based on component modal synthesis using POD modes for each component also gives a good approximation. With the reduction in the dimension of the system using these methods the computational time and cost can be reduced significantly.  相似文献   

9.
Hosten B  Castaings M 《Ultrasonics》2003,41(7):501-507
The surface impedance matrices in stratified plates made of fluid layers and/or anisotropic absorbing solid layers link the particle velocity field to the stress field at any interface. A surface impedance matrix represents the impedance at a given interface of all the layers located between that interface and one boundary of the medium. For each interface, there are two surface impedance matrices, each one corresponding to one boundary. This notion simplifies the computations of the modal solutions. The number of elements in the matrices involved in the computations is divided by a factor of four in comparison to usual matrix methods. This paper describes the method and presents examples to illustrate its interests and its efficiency where other techniques fail, for instance in the case of modes possessing energy in layers embedded in the structure.  相似文献   

10.
An improved model-based wavefront sensorless adaptive optics algorithm is proposed for laser beam cleanup.Deformable mirror(DM) eigenmodes are used to replace traditional Lukosz modes in order to avoid DM fitting errors. The traditional method is based on a sophisticated calibration process and solving linear equations. In our method, coefficients of DM eigenmodes are estimated by adding bidirectional modal biases into the system and then solving parabolic equations. The calibration process is omitted in our method, which makes it more feasible.From simulation and experimental results, the corrective accuracy of the improved method is higher than the traditional one.  相似文献   

11.
This paper reports on an investigation into the propagation of guided modes in curved waveguides and their scattering by inhomogeneities. In a general framework, the existence of propagation modes traveling in curved waveguides is discussed. The concept of translational invariance, intuitively used for the analysis of straight waveguides, is highlighted for curvilinear coordinate systems. Provided that the cross-section shape and medium properties do not vary along the waveguide axis, it is shown that a sufficient condition for invariance is the independence on the axial coordinate of the metric tensor. Such a condition is indeed checked by helical coordinate systems. This study then focuses on the elastodynamics of helical waveguides. Given the difficulty in achieving analytical solutions, a purely numerical approach is chosen based on the so-called semi-analytical finite element method. This method allows the computation of eigenmodes propagating in infinite waveguides. For the investigation of modal scattering by inhomogeneities, a hybrid finite element method is developed for curved waveguides. The technique consists in applying modal expansions at cross-section boundaries of the finite element model, yielding transparent boundary conditions. The final part of this paper deals with scattering results obtained in free-end helical waveguides. Two validation tests are also performed.  相似文献   

12.
Hugonin JP  Besbes M  Lalanne P 《Optics letters》2008,33(14):1590-1592
For the sake of numerical performance, we hybridize two common approaches often used in electromagnetic computations, namely the finite-element method and the aperiodic Fourier modal method. To that end, we propose an extension of the classical S-matrix formalism to numerical situations, which requires handling different mathematical representations of the electromagnetic fields. As shown with a three-dimensional example, the proposed G-matrix formalism is stable and allows for an enhanced performance in terms of numerical accuracy and efficiency.  相似文献   

13.
14.
MODAL ANALYSIS OF ROTATING COMPOSITE CANTILEVER PLATES   总被引:1,自引:0,他引:1  
A modelling method for the modal analysis of a rotating composite cantilever plate is presented in this paper. A set of linear ordinary differential equations of motion for the plate is derived by using the assumed mode method. Two in-plane stretch variables are employed and approximated to derive the equations of motion. The equations of motion include the coupling terms between the in-plane and the lateral motions as well as the motion-induced stiffness variation terms. Dimensionless parameters are identified and the explicit mass and the stiffness matrices for the modal analysis are obtained with the dimensionless parameters. The effects of the dimensionless angular velocity and the fiber orientation angles of rotating composite cantilever plates on their modal characteristics are investigated. Natural frequency loci veering and crossing along with associated mode shape variations are observed.  相似文献   

15.
We present a first-principles study of the static dielectric properties of ice and liquid water. The eigenmodes of the dielectric matrix E are analyzed in terms of maximally localized dielectric functions similar, in their definition, to maximally localized Wannier orbitals obtained from Bloch eigenstates of the electronic Hamiltonian. We show that the lowest eigenmodes of E (-1) are localized in real space and can be separated into groups related to the screening of lone pairs, intra-, and intermolecular bonds, respectively. The local properties of the dielectric matrix can be conveniently exploited to build approximate dielectric matrices for efficient, yet accurate calculations of quasiparticle energies.  相似文献   

16.
A modal computation of a complete clarinet is presented by the association of finite-element models of the reed and of part of the pipe with a lumped-element model of the rest of the pipe. In the first part, we compare modal computations of the reed and the air inside the mouthpiece and barrel with measurements performed by holographic interferometry. In the second part, the complete clarinet is modeled by adjoining a series of lumped elements for the remaining part of the pipe. The parameters of the lumped-resonator model are determined from acoustic impedance measurements. Computed eigenmodes of the whole system show that modal patterns of the reed differ significantly whether it is alone or coupled to air. Some modes exhibit mostly reed motion and a small contribution of the acoustic pressure inside the pipe. Resonance frequencies measured on a clarinet with the mouthpiece replaced by the cylinder of equal volume differ significantly from the computed eigenfrequencies of the clarinet taking the actual shape of the mouthpiece into account and from those including the (linear) dynamics of the reed. This suggests revisiting the customary quality index based on the alignment of the peaks of the input acoustical impedance curve.  相似文献   

17.
Multimode nonclassical states of light are an essential resource in quantum computation with continuous variables, for example, in cluster state computation. We report in this Letter the first experimental evidence of a multimode nonclassical frequency comb in a femtosecond synchronously pumped optical parametric oscillator. In addition to a global reduction of its quantum intensity fluctuations, the system features quantum correlations between different parts of its frequency spectrum. This allows us to show that the frequency comb is composed of several uncorrelated eigenmodes having specific spectral shapes, two of them at least being squeezed, and to characterize their spectral shapes.  相似文献   

18.
A mode-based approach is described for the mid-frequency vibration analysis of a complex structure built-up from a long-wavelength source and a short-wavelength receiver. The source and the receiver respectively have low and high modal densities and modal overlaps. Each substructure is described in terms of its uncoupled, free-interface natural modes. The interface forces and displacements are decomposed in terms of a set of interface basis functions. Enforcing equilibrium and continuity conditions along the interface hence yields an analytical solution for the vibration response of the built-up structure. Expressions for the frequency response of the source and the power transmitted to the receiver are found. The correlations between the modal properties of the source and the receiver along the interface are derived. These modify the dynamic stiffness matrix of the structure. The flexible receiver is seen to add effective mass and damping to the source. The modes of the short-wavelength receiver are then described statistically in terms of a simple standing wave model. This approximation avoids the need for a modal analysis of the receiver. The results are compared with those of other methods including fuzzy structure theory. Numerical and experimental examples for beam-stiffened plate models are presented.  相似文献   

19.
光子晶体波导耦合的波分复用研究   总被引:1,自引:0,他引:1  
两平行光子晶体单模波导的相互耦合组成一个耦合结构。两本征模的色散曲线相交并出现简并,简并模之间的耦合作用使模式的分布发生了改变。由于耦合的作用,各个波长的光波会在不同的波导中传输。在简并点处两本征模发生解耦合,光波会沿着原来的方向传输。将两个不同耦合长度的光子晶体波导耦合结构集成在一起,就可以组成一个三波长的光子晶体波分复用器。  相似文献   

20.
Hsueh YL  Hu ES  Marhic ME  Kazovsky LG 《Optics letters》2003,28(14):1188-1190
An improved full-vectorial method exploiting the opposite-parity property of eigenmodes based on orthonormal-functions expansion is proposed to solve the wave equation for holey optical fibers. By use of the parity property of eigenmodes in symmetric structures, the number of orthonormal function integrals involved in the calculation is reduced, and the computation efficiency is greatly enhanced. The coupling between the two transverse field components is considered, and both dominant and minor field components can be calculated for the accurate modeling of fiber modes. This method is useful for efficiently modeling holey fibers, especially those with large air holes, in which the coupling effect that is due to refractive-index discontinuities is strong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号