首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Potma EO  Evans CL  Xie XS 《Optics letters》2006,31(2):241-243
We have achieved rapid nonlinear vibrational imaging free of nonresonant background with heterodyne coherent anti-Stokes Raman scattering (CARS) interferometric microscopy. This technique completely separates the real and imaginary responses of nonlinear susceptibility chi(3) and yields a signal that is linear in the concentration of vibrational modes. We show that heterodyne CARS microscopy permits the detection of weak vibrational resonances that are otherwise overshadowed by the strong interference of the nonresonant background.  相似文献   

2.
郑娟娟  姚保利  邵晓鹏 《物理学报》2017,66(11):114206-114206
相干反斯托克斯拉曼散射(CARS)显微能够对样品的特殊化学组分进行选择性成像,无需荧光标记,在生物医学领域被广泛应用.然而,传统的CARS图像往往存在非共振背景信号.本文将基于光强传输方程的单光束相位成像技术用于CARS显微成像,来抑制CARS的非共振背景信号.该方法通过记录样品在三个相邻平面上的CARS图像,然后利用光强传输方程获取CARS光场的相位分布,最后利用共振CARS信号和非共振背景信号在相位上的差异,实现了对背景噪声的抑制.该方法无需参考光,通过三次测量可完成CARS的背景噪声抑制,具有良好的应用前景.  相似文献   

3.
We report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent.  相似文献   

4.
Evans CL  Potma EO  Xie XS 《Optics letters》2004,29(24):2923-2925
We demonstrate coherent anti-Stokes Raman scattering (CARS) heterodyne spectral interferometry for retrieval of the real and imaginary components of the third-order nonlinear susceptibility (chi(3)) of molecular vibrations. Extraction of the imaginary component of chi(3) allows a straightforward reconstruction of the vibrationally resonant signal that is completely free of the electronic nonresonant background and resembles the spontaneous Raman spectrum. Heterodyne detection offers potential for signal amplification and enhanced sensitivity for CARS microscopy.  相似文献   

5.
We have developed ultrabroadband (>2000 cm(-1)) multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy using a subnanosecond (sub-ns) microchip laser source. A photonic crystal fiber specifically designed for sub-ns supercontinuum (SC) generation has been used for obtaining ultrabroadband Stokes radiation, which enables us to achieve simultaneous vibrational excitation in the range from 800 to 3000 cm(-1). We have successfully obtained multiplex CARS spectra for several molecular liquids. Since the CARS system using the sub-ns SC is simple and compact, it can be easily applied to ultrabroadband multiplex CARS microspectroscopy.  相似文献   

6.
Coherent anti-Stokes Raman scattering (CARS) microscopy is a promising tool for chemically selective imaging based on molecular vibrations. While CARS is currently used as a biological imaging tool, many variations are still being developed, perhaps the most important being multiplex CARS microscopy. Multiplex CARS has the advantage of comparing images based on different molecular vibrations without changing the excitation wavelengths. Here we demonstrate both high-spectral- and spatial-resolution multiplex CARS imaging of polymer films, using a simple scheme for chirped CARS with a spectral bandwidth of 300 cm(-1).  相似文献   

7.
We report all-UV coherent anti-Stokes Raman scattering (CARS) in calcite with 250-280 nm pump, Stokes, probe, and anti-Stokes light. UV CARS efficiency is approximately 7x higher than for comparable scattering in the visible, 480-540 nm. Time-resolved UV CARS reveals lengthening of the dephasing time of 1086 cm(-1) CO3(2-) internal vibrations from 4 to 7 ps with increasing vibrational excitation, consistent with a phonon depletion model.  相似文献   

8.
If Coherent Antistokes Raman Scattering (CARS) is excited by a biharmonic pump in resonance with one photon molecular transition, the Raman line shape is significantly changed compared to the case of nonresonant excitation. This is due to an essential alteration of the 3rd order susceptibility responsible for CARS. Aside from a considerable enhancement of the Raman signal (which makes it possible to detect dissolved molecules in concentration lower than 10-4 mole/l) the most marked effects are a reversal of the spectral sequence of the Raman maximum and minimum in the CARS-spectrum and for a specially chosen concentration an enhanced contrast of the signal. The factors determining the CARS line shape are discussed theoretically and preliminary experimental results concerning resonance CARS spectra are reported.  相似文献   

9.
We investigate the role of a spatially inhomogenous nonresonant background medium on several Raman-based imaging modalities. In particular, we consider a small resonant bead submerged in a spatially heterogeneous nonresonant χ(3) background. Using detailed 3D electrodynamic simulations, we compare coherent anti-Stokes Raman scattering (CARS), frequency-modulated CARS, amplitude-modulated stimulated Raman scattering (SRS), and frequency-modulated SRS. We find that only FM-SRS is background-free.  相似文献   

10.
We have developed a new technique for efficient suppression of the nonresonant background in coherent anti-Stokes Raman scattering (CARS). The advantage of this technique, which is based upon phase-controlled superposition of an appropriately selected reference signal, is presented in theory and demonstrated experimentally by the example of the S(3) (pure rotational) transition of molecular hydrogen.  相似文献   

11.
A partial wave decomposition of \({v \mathord{\left/ {\vphantom {v {\bar v}}} \right. \kern-0em} {\bar v}}\) single pion production is used for studying resonant and nonresonant contributions. The dominant resonance excitation is dynamically described by a semirelativistic quark model. Nonresonant background is considered to arise from Born-terms diminuished by the lowest order partial waves (which are determined by resonances alone.) The method permits evaluation of interferences between resonance and background amplitudes as well as, more importantly, among resonances themselves. Predicted interference patterns are reflected by the pion angular distribution coefficients which compare well with recent data. Results obtained this way are also in agreement with momentum transfer measurements if higher resonance excitation form factors are chosen to resemble those tested in pion photoproduction, rendering simultaneously any nonresonant background small.  相似文献   

12.
We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000 cm(-1) with a spectral resolution of approximately 25 cm(-1). We characterize the stability and robustness of CARS microspectroscopy employing this light source.  相似文献   

13.
We demonstrate time-resolved coherent anti-Stokes Raman scattering (CARS) by using a frequency-tunable femtosecond soliton output of a silica photonic-crystal fiber (PCF) as a Stokes field. This approach allows quantum beats originating from two close Raman modes to be resolved in the time-domain CARS response. The nonresonant CARS background is efficiently suppressed by introducing a delay time between the probe pulse and the pump-Stokes pulse dyad, suggesting a convenient fiber-optic format for the Stokes source in time-resolved CARS and allowing sensitivity improvement in PCF-based CARS spectroscopes and microscopes.  相似文献   

14.
Coherent anti-Stokes Raman scattering (CARS) is used to measure relations between the resonant (Raman) and nonresonant (Kerr-type) optical nonlinearities of air-guided modes in a hollow-core photonic-crystal fiber (PCF). We demonstrate that, due to its interference nature, CARS provides a convenient tool for measuring the contribution of the fiber cladding to the total nonlinearity sensed by air-guided modes in hollow PCFs. On a Raman resonance with molecular vibrations in the gas that fills the fiber core, a two-color laser field is shown to induce optical nonlinearities that are several orders of magnitude higher than the nonresonant Kerr-type nonlinearities typical of air-guided PCF modes.  相似文献   

15.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtosecond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.  相似文献   

16.
尹君  于凌尧  刘星  万辉  林子扬  牛憨笨 《中国物理 B》2011,20(1):14206-014206
In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science.  相似文献   

17.
Recent developments in rotational CARS thermometry and critical issues when comparing vibrational and rotational CARS thermometry are described. In particular, the development of dual broadband rotational CARS and the noise characteristics of this approach are emphasized. The difficulty with unambiguous temperature determination in vibrational CARS with unknown parameters, in particular the nonresonant background susceptibility, and the lower sensitivity of rotational CARS thermometry at flame temperatures are also discussed.  相似文献   

18.
Ganikhanov F  Evans CL  Saar BG  Xie XS 《Optics letters》2006,31(12):1872-1874
We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.  相似文献   

19.
Lim SH  Caster AG  Leone SR 《Optics letters》2007,32(10):1332-1334
A novel Fourier transform spectral interferometric (FTSI) multiplex coherent anti-Stokes Raman scattering (CARS) technique is developed to extract the vibrational spectrum equivalent to the spontaneous Raman scattering. The conventional FTSI method is modified to use the internal nonresonant CARS signal as a local oscillator to perform spectral interferometry. Utilizing the causality of the coherent vibration (i.e., there should be no signal before the laser excitation), this new FTSI method recovers the entire complex vibrational spectral parameters. We demonstrate this technique with a previously reported single-pulse multiplex CARS method that uses a single phase-controlled broadband ultrafast laser pulse.  相似文献   

20.
An electric field enhanced by a metallic nanoprobe has locally induced coherent anti-Stokes Raman scattering (CARS) of adenine molecules in a nanometric DNA network structure. Owing to the third-order nonlinearity, the excitation of the CARS polarization is extremely confined to the end of the tip apex, resulting in a spatial resolution far beyond the diffraction limit of light. Our tip-enhanced CARS microscope visualized the DNA network structure at a specific vibrational frequency (approximately 1337 cm(-1)) corresponding to the ring-breathing mode of diazole of adenine molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号