共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect specific complementary target DNA through a sandwich hybridization reaction. The DNA hybrids were first caught and assembled on the surface of 605 nm-emitting QDs (605QDs) through specific streptavidin-biotin binding. The 525 nm-emitting QDs (525QDs) were then added to bind the other end of DNA hybrids. The coincidence signals were observed only when the presence of target DNA led to the formation of 605QD/DNA hybrid/525QD complexes. In comparison with a conventional QD-based assay, this assay provided high detection efficiency and short analysis time due to its high hybridization efficiency resulting from the high diffusion coefficient and no limitation of temperature treatment. This QD-based single-molecule coincidence detection offers a simple, rapid and ultra sensitive method for genomic DNA analysis in a homogenous format. 相似文献
2.
G-quadruplex containing peroxidase DNAzyme is a complex of hemin and a single-stranded guanine-rich DNA (hemin-binding DNA aptamer), which is used as an attractive catalytic label for biosensing recently. Therein, the hemin-binding DNA aptamer contains four GGG repeats and can fold into a G-quadruplex structure. In this paper, we have developed a new split mode to divide the hemin-binding DNA aptamer into two parts: one possesses three GGG repeats, and another part possesses one GGG repeat, namely, the 3:1 split mode. The combination of G-quadruplex and hemin binding could be used as a sensitive probe for the identification of single nucleotide polymorphisms by giving a color signal, visible to the naked eye at room temperature. The G-quadruplex containing peroxidase DNAzyme utilizes the 3:1 split mode and can be directly used for the identification of SNPs with a detection limit in the nM range when the matching length of the probe is short enough. When the matching length of the probe is relatively long, another method adding competition sequences to the probe could also operate effectively for the identification of SNPs. The results also suggested that we could detect the signal when the mutation sample was only 5% in the total target DNA with a competition strategy. 相似文献
3.
Song Y Zhang W An Y Cui L Yu C Zhu Z Yang CJ 《Chemical communications (Cambridge, England)》2012,48(4):576-578
We have combined an allosteric molecular beacon for target recognition and guanine-rich DNAzyme for signal amplification to develop a new platform for visual detection of nucleic acids with single-base mismatch detection capability. The fully DNA-structured platform can undergo color change in response to target DNA/RNA, which enables sensitive and selective visual detection in biological samples. 相似文献
4.
生物硫醇(如半胱氨酸(Cys)、同型半胱氨酸(Hcy)及谷胱甘肽(GSH))与生物体和细胞中的许多生理和病理过程密切相关。荧光探针是对生物硫醇灵敏检测与成像的有力工具。本文合成了一种可检测生物硫醇的基于2′-羟基查尔酮荧光团开启型荧光探针1。探针中的2,4-二硝基苯磺酸酯基团既作为反应识别基团,又作为荧光猝灭基团。在DMSO/Tris(体积比8/2,pH=8.4)中,探针1与生物硫醇反应后释放出前体化合物3,3具有激发态分子内质子转移(ESIPT)和聚集诱导发光(AIE)特性,从而导致长波长荧光发射及较大的斯托克斯位移。探针1具有合成简单、灵敏度高、选择性高、细胞毒性低等优点,可以方便地检测溶液和活细胞中的生物硫醇。 相似文献
5.
Weizmann Y Patolsky F Lioubashevski O Willner I 《Journal of the American Chemical Society》2004,126(4):1073-1080
The ultra-sensitive magneto-mechanical detection of DNA, single-base-mismatches in nucleic acids, and the assay of telomerase activity are accomplished by monitoring the magnetically induced deflection of a cantilever functionalized with magnetic beads associated with the biosensing interface. The analyzed M13phi DNA hybridized with the nucleic acid-functionalized magnetic beads is replicated in the presence of dNTPs that include biotin-labeled dUTP. The resulting beads are attached to an avidin-coated cantilever, and the modified cantilever is deflected by an external magnetic field. Similarly, telomerization of nucleic acid-modified magnetic beads in the presence of dNTPs, biotin-labeled dUTP, and telomerase from cancer cell extracts and the subsequent association of the magnetic beads to the cantilever surface results in the lever deflection by an external magnetic field. M13phi DNA is sensed with a sensitivity limit of 7.1 x 10(-20) M by the magneto-mechanical detection method. 相似文献
6.
We have developed a nucleic acid (NA) sensor based on mediated electrochemical oxidation of guanine residues. In this method, oligonucleotide probes are bound to a tin-doped indium oxide (ITO) electrode through a self-assembled phosphonate monolayer. The end carboxyl moiety of the monolayer is activated with carbodiimide and reacted with the amine group of a C6 alkyl linker which has been added to the 5'-end of the oligonucleotide probe. Upon hybridization of the complementary target NA, the hybrid is detected using a redox-active mediator, tris(2,2'-bipyridyl) ruthenium(II). We speculate that the monolayer does not impede electron-transfer since it contains many defect sites when assembled on a polycrystalline ITO surface. These defect sites are accessible to the mediator, but not to NA or proteins. The electrocatalytic current was a linear function of the amount of guanine bound at the electrode surface, with a detection limit of 120 amoles of guanine cm(-2) at 0.28 cm(2) ITO electrodes. 相似文献
7.
We used cotton thread as substrate to develop a novel room temperature DNA detection device for low-cost, sensitive and rapid detection of a human genetic disease, hereditary tyrosinemia type I related DNA sequences. A novel adenosine based molecular beacon (ABMB) probe modified on gold nanoparticle was used as reporter probe. In the presence of coralyne, a small molecule which can react with adenosines, the ABMB would form a hairpin structure just like traditional molecular beacon used extensively. In the presence of target DNA sequences, the hairpin structure of ABMB modified on gold nanoparticles will be opened and the biotin group modified at one end of the DNA probes will be released and react with the streptavidin immobilized on the test zone of the cotton thread. The response of the thread based DNA test device is linear over the range of 2.5–100 nM complementary DNA. The ability of our developed device for discriminating the single base mismatched DNA related to a human genetic disease, hereditary tyrosinemia type I, was improved comparing with previous report. It is worth mentioning that the whole assay procedure for DNA test is performed under room temperature which simplified the assay procedures greatly. 相似文献
8.
Liqing Lin Xinhua Lin Jinghua Chen Wei Chen Miao He Yuanzhong Chen 《Electrochemistry communications》2009,11(8):1650-1653
This communication reports on a novel biosensor to study the hybridization specificity by using thiolated hairpin locked nucleic acids (LNA) as the capture probe. The LNA probe was immobilized on the gold electrode through sulfur–Au interaction and could selectively hybridize with its target DNA. Differential pulse voltammetry (DPV) was used to monitor the hybridization reaction on the probe electrode. The decrease of the peak current of methylene blue, an electroactive indicator, was observed upon hybridization of the probe with the target DNA. The results indicated this new method has excellent specificity for single-base mismatch and complementary after hybridization, and a high sensitivity. This LNA probe has been used for assay of fusion gene in Chronic Myelogenous Leukemia (CML) of the real sample with satisfactory result. 相似文献
9.
A fluorometric lateral flow assay has been developed for the detection of nucleic acids. The fluorophores phycoerythrin (PE) and fluorescein isothiocyanate (FITC) were used as labels, while a common digital camera and a colored vinyl-sheet, acting as a cut-off optical filter, are used for fluorescence imaging. After DNA amplification by polymerase chain reaction (PCR), the biotinylated PCR product is hybridized to its complementary probe that carries a poly(dA) tail at 3? edge and then applied to the lateral flow strip. The hybrids are captured to the test zone of the strip by immobilized poly(dT) sequences and detected by streptavidin-fluorescein and streptavidin-phycoerythrin conjugates, through streptavidin-biotin interaction. The assay is widely applicable, simple, cost-effective, and offers a large multiplexing potential. Its performance is comparable to assays based on the use of streptavidin-gold nanoparticles conjugates. As low as 7.8 fmol of a ssDNA and 12.5 fmol of an amplified dsDNA target were detectable. 相似文献
10.
Immunomagnetic nanoparticle based quantitative PCR for rapid detection of Salmonella 总被引:1,自引:0,他引:1
Padmavathy Bakthavathsalam Vinoth Kumar Rajendran Uttara Saran Suvro Chatterjee Baquir Mohammed Jaffar Ali 《Mikrochimica acta》2013,180(13-14):1241-1248
We have developed a rapid and sensitive method for immunomagnetic separation (IMS) of Salmonella along with their real time detection via PCR. Silica-coated magnetic nanoparticles were functionalized with carboxy groups to which anti-Salmonella antibody raised against heat-inactivated whole cells of Salmonella were covalently attached. The immuno-captured target cells were detected in beverages like milk and lemon juice by multiplex PCR and real time PCR with a detection limit of 104 cfu.mL?1 and 103 cfu.mL?1, respectively. We demonstrate that IMS can be used for selective concentration of target bacteria from beverages for subsequent use in PCR detection. PCR also enables differentiation of Salmonella typhi and Salmonella paratyphi A using a set of four specific primers. In addition, IMS—PCR can be used as a screening tool in the food and beverage industry for the detection of Salmonella within 3–4 h which compares favorably to the time of several days that is needed in case of conventional detection based on culture and biochemical methods.
The method uses silica coated magnetic nanoparticles immobilized with anti-Salmonella antibody for immunomagnetic separation of Salmonella from beverages followed by detection by multiplex PCR (mPCR) and real time PCR (qPCR). This methodology contributes to rapid screening and accurate detection of Salmonella contaminations in beverages. 相似文献
11.
Yu CJ Wang H Wan Y Yowanto H Kim JC Donilon LH Tao C Strong M Chong Y 《The Journal of organic chemistry》2001,66(9):2937-2942
We have synthesized two novel phosphoramidites with a ferrocenyl moiety at the 2'-ribose position linked through a butoxy linker. Using automated DNA/RNA synthesis techniques, oligonucleotides containing ferrocene at various positions were prepared and characterized by HPLC, MALDI-TOF mass spectrometry, and electrochemistry. Thermal stability studies of the ferrocene-modified DNA duplexes revealed that introduction of one or two ferrocenyl complexes does not result in an observed change of the T(m) values of the corresponding DNA duplexes when compared to the nonmodified hybrids. These data indicate that the introduction of a ferrocenyl group at the 2'-position of the ribose ring containing either a purine or pyrimidine base has no effect on the stability of the modified DNA. The electrochemical behavior of the ferrocene-containing DNA was examined by cyclic voltammetry. The modified 2'-ferrocene-oligonucleotides are electrochemically active and can be used as signaling probes for the electronic detection of nucleic acids on bioelectronic sensors. 相似文献
12.
Kossen K Vaish NK Jadhav VR Pasko C Wang H Jenison R McSwiggen JA Polisky B Seiwert SD 《Chemistry & biology》2004,11(6):807-815
Many reports have suggested that target-activated ribozymes hold potential value as detection reagents. We show that a "half"-ribozyme ligase is activated similarly by three unstructured oligoribonucleotides representing the major sequence variants of a hepatitis C virus 5'-untranslated region (5'-UTR) target and by a structured RNA corresponding to the entire 5'-UTR. Half-ribozyme ligation product was detected both in an ELISA-like assay and in an optical immunoassay through the use of hapten-carrying substrate RNAs. Both assay formats afford a limit of detection of approximately 1 x 10(6) HCV molecules (1.6 attomol, 330 fM), a sensitivity which compares favorably to that provided by standard immunoassays. These data suggest that target-activated ribozyme systems are a viable approach for the sensitive detection of viral nucleic acids using high-throughput platforms. 相似文献
13.
14.
Feuillie C Merheb MM Gillet B Montagnac G Hänni C Daniel I 《Analytical and bioanalytical chemistry》2012,404(2):415-422
We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection. 相似文献
15.
The unique ability of pyrene to form excimers with distinct emission characteristic from monomer offers an attractive means to signal the interactions between biomolecules. In this work, dual pyrene-labeled pyrrolidinyl peptide nucleic acid probe with a d-prolyl-2-aminocyclopetanecarboxylic acid α,β-dipeptide backbone (acpcPNA) was designed as an excimer-to-monomer switching probe for DNA sequence detection. In single stranded state, the excimer emission at 470 nm was mainly observed in the fluorescence spectrum. In the presence of DNA target, the hybridization resulted in separation of the two pyrene units, therefore the spectrum displayed increased monomer emission at 380 nm with concomitant decreased excimer emission. Switching ratio, which is defined as the ratio of the monomer to excimer in the double stranded form [F380/F470(ds)] divided by the same value obtained from the single stranded form [F380/F470(ss)], was used to describe the performance of the probes. Switching ratios in the range of 5–30 were observed with various dual pyrene-labeled acpcPNA probes bearing pyrenebutyryl label attached five-base apart. Practically no excimer-to-monomer switching behavior was observed with DNA targets carrying a single mismatched base as shown by the small switching ratios of ∼1. 相似文献
16.
Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level 总被引:5,自引:0,他引:5
Doré K Dubus S Ho HA Lévesque I Brunette M Corbeil G Boissinot M Boivin G Bergeron MG Boudreau D Leclerc M 《Journal of the American Chemical Society》2004,126(13):4240-4244
We report the specific detection of a few hundred molecules of genetic material using a fluorescent polythiophene biosensor. Such recognition is based on simple electrostatic interactions between a cationic polymeric optical transducer and the negatively charged nucleic acid target and can be done in less than 1 h, simply and affordably, and without any chemical reaction. This simple system is versatile enough to detect nucleic acids of various lengths, including a segment from the RNA genome of the Influenza virus. 相似文献
17.
《中国化学快报》2023,34(3):107786
Despite the rapid development of fluorescence detection modalities for disease diagnosis, novel fluorescent molecules and probes still face with tremendous pressure to transform before employing such fluorescent tools in the clinic. Impressively, the fluorescent probes based on the traditional fluorescent dye are expected to accelerate the transformation process. Herein, methylene blue is requisitioned to design the GSH responsive probe MB-SS-CPT elaborately. The as-synthesized MB-SS-CPT provides a dramatic optical advantage for GSH detection in vitro, cell fluorescence imaging, in vivo imaging, and antitumor therapy. 相似文献
18.
19.
Kolpashchikov DM 《Journal of the American Chemical Society》2005,127(36):12442-12443
A new probe that can fluorescently report the presence of specific nucleic acids in solution with extremely high selectivity was developed. The probe consists of malachite green-a triphenylmethane dye-and two short RNA strands, each of which comprises a fragment complementary to an analyte molecule and a fragment of a malachite green aptamer (MGA). The two RNA strands form MGA upon hybridization to the adjacent positions of the nucleic acid analyte. MGA is able to bind malachite green and enhance the fluorescence of the dye, thus monitoring the presence of the nucleic acid in solution. The probe reliably discriminates against 41 out of 42 possible single nucleotide substitutions in 14-mer DNA analyte at room temperature in physiological buffer. Consisting of unmodified RNA strands, which can be expressed in living cells, binary MGA probe represents a promising instrument for real-time nucleic acid monitoring in vivo. 相似文献
20.
A novel sandwich assay with molecular beacons as report probes has been developed and integrated into one-dimensional microfluidic beads array (1-D chip) to pursue a label-free and elution-free detection of DNA/mRNA targets. In contrast with the immobilized molecular beacons, this sandwich assay can offer lower fluorescence background and correspondingly higher sensitivity. Furthermore, this sandwich assay on 1-D chip operating in conjunction with molecular beacon technique allows multiple targets detection without the need of laborious and time-consuming elution, which makes the experiment process simple, easy to handle, and reproducible results. In the experiment, the synthesized DNA targets with different concentrations were detected with a detection limit of ∼0.05 nM. Moreover, the mRNA expression changes in A549 cells before and after anticancer drug 5-flouorouracil treatments were detected and the results were validated by the conventional RT-PCR method. 相似文献