首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex Mn2(H2O)(OAc)4(tmeda)2 (tmeda = N,N,N',N'-tetramethylethylenediamine) is a model for the active site of hydrolase enzymes containing acetate-bridged dimanganese cores. The two high-spin Mn(II) ions are antiferromagnetically coupled, as determined by previous magnetic susceptibility studies (Yu, S.-B; Lippard, S. J.; Shweky, I; Bino, A. Inorg. Chem. 1992, 31, 3502-3504) to yield a spin "ladder" with total spin S = 0, 1, 2, ..., 5 in increasing energy. In this study, the complex was characterized by Q-band and X-band EPR spectroscopy in frozen solution. Analysis of the temperature dependence of these EPR spectra indicates that the primary spectral contribution is from the S = 2 manifold. The EPR spectra were simulated using a full spin Hamiltonian for this manifold of a coupled spin system, which provided the fit parameters J = -2.9 cm-1, g = 2.00, and D2 = -0.060 +/- 0.003 cm-1. An additional multiline EPR signal is observed which is proposed to arise from the total spin S = 5/2 ground state of a Mn(II) trimer of the type Mn3(OAc)6(tmeda)2.  相似文献   

2.
Two new one-dimensional heterometallic complexes, [Mn(3)Na(L)(4)(CH(3)CO(2))(MeOH)(2)](ClO(4))(2)·3H(2)O (1), [Mn(3)Na(L)(4)(CH(3)CH(2)CO(2))(MeOH)(2)](ClO(4))(2)·2MeOH·H(2)O (2) [LH(2) = 2-methyl-2-(2-pyridyl)propane-1,3-diol], have been synthesized and characterized by X-ray crystallography. Both complexes feature Mn(II) and Na(I) ions in trigonal-prismatic geometries that are linked to octahedral Mn(IV) ions by alkoxy bridges. Variable-temperature direct- and alternating-current magnetic susceptibility data indicated a spin ground state of S = 11/2 for both complexes. Density functional theory calculations performed on 1 supported this conclusion.  相似文献   

3.
Reaction of manganese(II) perchlorate hexahydrate with a methanol solution of 1-thia-4,7-diazacyclononane ([9]aneN(2)S) resulted in the isolation of the manganese(II) complex [Mn([9]aneN(2)S)(2)](ClO(4))(2). The X-ray structure of this complex is reported: crystal system orthorhombic, space group Pbam, No. 55, a = 7.937(2) ?,b = 8.811(2) ?, c = 15.531(3) ?, Z = 2, R = 0.0579. The complex is high spin (S = (5)/(2)) with an effective magnetic moment (&mgr;(eff)) 5.82 &mgr;(B) at 298 K and 5.65 &mgr;(B) at 4.2 K. Computer simulation of the Q-band EPR spectrum of [Mn([9]aneN(2)S)(2)](ClO(4))(2) yields g = 1.99 +/- 0.01, |D| = 0.19 +/- 0.005 cm(-)(1), and E/D = 0.04 +/- 0.02. For the analogous hexaamine complex [Mn([9]aneN(3))(2)](ClO(4))(2) ([9]aneN(3) = 1,4,7-triazacyclononane) analysis of the EPR spectra produced the following values: g = 1.98 +/- 0.01, |D| = 0.09 +/- 0.003 cm(-)(1), and E/D = 0.1 +/- 0.01. The spin Hamiltonian parameters for [Mn([9]aneN(2)S)(2)](ClO(4))(2) derived from the EPR spectra produced a good fit to the magnetic susceptibility data.  相似文献   

4.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

5.
Two tetranuclear Mn complexes with an average Mn oxidation state of +2.5 have been prepared. These valence isomers have been characterized by a combination of X-ray crystallography, X-ray absorption spectroscopy, and magnetic susceptibility. The Mn(II)3Mn(IV) tetramer has the Mn ions arranged in a distorted tetrahedron, with an S = 6 ground spin state, dominated by ferromagnetic exchange among the manganese ions. The Mn(II)2Mn(III)2 tetramer also has a distorted tetrahedral arrangement of Mn ions but shows magnetic behavior, suggesting that it is a single-molecule magnet. The X-ray absorption near-edge structure (XANES) spectra for the two complexes are similar, suggesting that, while Mn XANES has sufficient sensitivity to distinguish between trinuclear valence isomers (Alexiou et al. Inorg. Chem. 2003, 42, 2185), similar distinctions are difficult for tetranuclear complexes such as that found in the photosynthetic oxygen-evolving complex.  相似文献   

6.
A new one-dimensional chain complex, Mn(hfac)(2)-bridged [2-(3-pyridyl)(nitronyl nitroxide)Mn(hfac)(2)](2), was prepared and its structure and magnetic properties were elucidated; the complex exhibited a large antiferromagnetic interaction of J(1)=-185 K between the three Mn(ii) atoms and the two nitronyl nitroxides to give S=13/2 spin units and a small ferromagnetic interaction of J(3)'=+0.02 K between these spin units at low temperatures (50-1.9 K), compatible with the theoretical analysis for model compounds.  相似文献   

7.
The g-tensors and hyperfine tensors of the S = (1)/(2) ground state of the mixed valence [LMn(IIImu-O)(2)Mn(IV)L](3+) complex (L = N,N'-dimethyl-N,N'-bis(2-pyridylmethyl)ethane-1,2-diamine) was deter-mined in the solid-state and frozen acetonitrile solution by high-field EPR. Both samples exhibited complex anisotropic temperature behaviors that precluded the use of routine spectrum simulation procedures to extract the spin parameters. To circumvent this problem, the parameters were measured directly by using multifrequency techniques. In the case of the frozen solution, this approach yielded seven of the nine spin parameters with varying uncertainty, the two extreme principal g-values, the four hyperfine couplings associated with each of these two g-values, and the middle g-value. This latter parameter was obtained from a first moment analysis. Unlike simulations, the statistical errors associated with each value could be assigned in a straightforward and rigorous manner. The directly measured g-values were different in frozen solution and polycrystalline powder. The temperature dependence of the high-field EPR spectra of the polycrystalline powder revealed a spin-spin interaction between the neighboring binuclear complexes.  相似文献   

8.
Cationic tungsten(V) methylidynes [L4W(X)[triple bond]CH]+[B(C6F5)4]- [L = PMe3, 0.5dmpe (dmpe = Me2PCH2CH2PMe2), X = Cl, OSO2CF3] have been prepared in high yield by a one-electron oxidation of the neutral tungsten(IV) methylidynes L4W(X)[triple bond]CH with [Ph3C]+[B(C6F5)4]-. The ease and reversibility of the one-electron oxidation of L4W(X)[triple bond]CH were demonstrated by cyclic voltammetry in tetrahydrofuran (E1/2 is approximately -0.68 to -0.91 V vs Fc). The paramagnetic d1 (S = 1/2) complexes were characterized in solution by electron spin resonance (g = 2.023-2.048, quintets due to coupling to 31P) and NMR spectroscopy and Evans magnetic susceptibility measurements (mu = 2.0-2.1 muB). Single-crystal X-ray diffraction showed that the cationic methylidynes are structurally similar to the neutral precursor methylidynes. In addition, the neutral (PMe3)4W(Cl)[triple bond]CH was deprotonated with a strong base at the trimethylphosphine ligand to afford (PMe3)3(Me2PCH2)W[triple bond]CH, a tungsten(IV) methylidyne complex that features a (dimethylphosphino)methyl ligand.  相似文献   

9.
A series of heterometal cyclic tetranuclear complexes [Cu(II)LM(II)(hfac)](2) (M(II) = Zn (1), Cu (2), Ni (3), Co (4), Fe(5), and Mn (6)) have been synthesized by the assembly reaction of K[CuL] and [M(II)(hfac)(2)(H(2)O)(2)] with a 1:1 mole ratio in methanol, where H(3)L = 1-(2-hydroxybenzamido)-2-((2-hydroxy-3-methoxybenzylidene)amino)ethane and Hhfac = hexafluoroacetylacetone. The crystal structures of 2, 4, and [Cu(II)LMn(II)(acac)](2) (6a) (Hacac = acetylacetone) were determined by single-crystal X-ray analyses. Each complex has a cyclic tetranuclear Cu(II)(2)M(II)(2) structure, in which the Cu(II) complex functions as a "bridging ligand complex", and the Cu(II) and M(II) ions are alternately arrayed. One side of the planar Cu(II) complex coordinates to one M(II) ion at the two phenoxo and the methoxy oxygen atoms, and the opposite side of the Cu(II) complex coordinates to another M(II) ion at the amido oxygen atom. The temperature-dependent magnetic susceptibilities revealed spin states of S(M) = 0, 1/2, 1, 3/2, 2, and 5/2 for the Zn(II), Cu(II), Ni(II), Co(II), Fe(II), and Mn(II) ions, respectively. Satisfactory fittings to the observed magnetic susceptibility data were obtained by assuming a rectangular arrangement with two different g-factors for the Cu(II) and M(II) ions, two different isotropic magnetic exchange interactions, J(1) and J(2), between the Cu(II) and M(II) ions, and a zero-field splitting term for the M(II) ion. In all cases, the antiferromagnetic coupling constants were found for both exchange interactions suggesting nonzero spin ground states with S(T) = 2/S(M) - S(Cu)/, which were confirmed by the analysis of the field-dependent magnetization measurements.  相似文献   

10.
Wang H  Liu Z  Liu C  Zhang D  Lü Z  Geng H  Shuai Z  Zhu D 《Inorganic chemistry》2004,43(13):4091-4098
Three new complexes of the formula M(2)L(2) derived from 2-(4-quinolyl)nitronyl nitroxide (4-QNNN) and M(hfac)(2) [M = Mn(II), Co(II), and Cu(II)], (4-QNNN)(2).[Mn(hfac)(2)](2) (1), (4-QNNN)(2).[Co(hfac)(2)](2).2H(2)O (2), and (4-QNNN)(2).Cu(hfac)(2).Cu'(hfac)(2) (3), were synthesized and characterized structurally as well as magnetically. Complexes 1 and 2 are four-spin complexes with quadrangle geometry, in which both the nitrogen atoms of quinoline rings and oxygen atoms of nitronyl nitroxides are involved in the formation of coordination bonds. For complex 3, however, the nitrogen atoms of quinoline rings are coordinated with Cu(II) ion to afford a three-spin complex, which is further linked to another molecule of Cu(hfac)(2) (referred to as Cu'(hfac)(2)) to form a 1D alternating chain. The magnetic behaviors of the three complexes were investigated. For complex 1, as the nitronyl nitroxides and Mn(II) ions are strongly antiferromagnetically coupled, consequently its temperature dependence of magnetic susceptibility was fitted to the model of spin-dimer with S = 2, yielding the intradimer magnetic exchange constant of J = -0.82 cm(-1). For complex 2, the temperature dependence of the magnetic susceptibility in the T > 50 K region was simulated with the model of two-spin unit with S(1) = 3/2 and S(2) = 1/2, leading to J = -321.9 cm(-1) for the magnetic interaction due to Co(II).O coordination bonding, D = -16.3 cm(-1) (the zero-field splitting parameter), g = 2.26, and zJ = -3.8 cm(-1) for the magnetic interactions between Co(II) ions and nitronyl nitroxides through quinoline rings and those between nitronyl nitroxides due to the short O.O short contacts. The temperature dependence of magnetic susceptibility of 3 was approximately fitted to a model described previously affording J(1) = -6.52 cm(-1) and J(2) = 3.64 cm(-1) for the magnetic interaction between nitronyl nitroxides and Cu(II) ions through the quinoline unit via spin polarization mechanism and the weak O.Cu coordination bonding, respectively.  相似文献   

11.
By using 2'-hydroxyacetophenoxime, a new family of complexes with an [Mn(III)(2)Mn(IV)(3)Ln(5)O(5)] core was obtained with Ln = Tm (1), Lu (2), and Yb (3). Heterometallic Mn/Tm and Mn/Lu combinations have had no precedence so far. Studies of the magnetic properties indicate the presence of intracomplex antiferromagnetic interactions in 1 and 3, as well as a dominating ferromagnetic interaction between Mn(III) and Mn(IV) spins in 2, leading to an S(T) = 5/2 ground state.  相似文献   

12.
The reaction of 2-(hydroxyethyl)pyridine (hepH) with a 2:1 molar mixture of [Mn3O(O2CMe)6(py)3]ClO4 and [Mn3O(O2CMe)6(py)3] in MeCN afforded the new mixed-valent (16Mn(III), 2Mn(II)), octadecanuclear complex [Mn18O14(O2CMe)18(hep)4(hepH)2(H2O)2](ClO4)2 (1) in 20% yield. Complex 1 crystallizes in the triclinic space group P. Direct current magnetic susceptibility studies in a 1.0 T field in the 5.0-300 K range, and variable-temperature variable-field dc magnetization studies in the 2.0-4.0 K and 2.0-5.0 T ranges were obtained on polycrystalline samples. Fitting of magnetization data established that complex 1 possesses a ground-state spin of S = 13 and D = -0.18 K. This was confirmed by the value of the in-phase ac magnetic susceptibility signal. Below 3 K, the complex exhibits a frequency-dependent drop in the in-phase signal, and a concomitant increase in the out-of-phase signal, consistent with slow magnetization relaxation on the ac time scale. This suggests the complex is a single-molecule magnet (SMM), and this was confirmed by hysteresis loops below 1 K in magnetization versus dc field sweeps on a single crystal. Alternating current and direct current magnetization data were combined to yield an Arrhenius plot from which was obtained the effective barrier (U(eff)) for magnetization reversal of 21.3 K. Below 0.2 K, the relaxation becomes temperature-independent, consistent with relaxation only by quantum tunneling of the magnetization (QTM) through the anisotropy barrier via the lowest-energy MS = +/-13 levels of the S = 13 spin manifold. Complex 1 is thus the SMM with the largest ground-state spin to display QTM.  相似文献   

13.
This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.  相似文献   

14.
The ligand 1,4,7-tris(acetophenoneoxime)-1,4,7-triazacyclononane (H(3)L) has been synthesized and its coordination properties toward Cu(II), Ni(II), Co(II), and Mn(II) in the presence of air have been investigated. Copper(II) yields a mononuclear complex, [Cu(H(2)L)](ClO(4)) (1), cobalt(II) and manganese(II) ions yield mixed-valence Co(III)(2)Co(II) (2a) and Mn(II)(2)Mn(III) (4) complexes, whereas nickel(II) produces a tetranuclear [Ni(4)(HL)(3)](2+) (3) complex. The complexes have been structurally, magnetochemically, and spectroscopically characterized. Complex 3, a planar trigonal-shaped tetranuclear Ni(II) species, exhibits irregular spin-ladder. Variable-temperature (2-290 K) magnetic susceptibility analysis of 3 demonstrates antiferromagnetic exchange interactions (J = -13.4 cm(-1)) between the neighboring Ni(II) ions, which lead to the ground-state S(t) = 2.0 owing to the topology of the spin-carriers in 3. A bulk ferromaganetic interaction (J = +2 cm(-1)) is prevailing between the neighboring high-spin Mn(II) and high-spin Mn(III) ions leading to a ground state of S(t) = 7.0 for 4. The large ground-state spin value of S(t) = 7.0 has been confirmed by magnetization measurements at applied magnetic fields of 1, 4 and 7 T. A bridging monomethyl carbonato ligand formation occurs through an efficient CO(2) uptake from air in methanolic solutions containing a base in the case of complex 4.  相似文献   

15.
A high-nuclearity mixed transition metal/actinide complex has been prepared from the reaction of a Mn(III)4 complex with Th(NO3)4 in MeCN/MeOH. The complex [Th6Mn10O22(OH)2(O2CPh)16(NO3)2-(H2O)8] is the largest such complex to date and the first Th/Mn species. It is rich in oxide groups, which stabilize all of the metals in the high Th(IV) and Mn(IV) oxidation levels. Magnetic characterization establishes that the complex has an S = 3 ground-state spin value.  相似文献   

16.
Lin CH  Chen CG  Tsai ML  Lee GH  Liaw WF 《Inorganic chemistry》2008,47(23):11435-11443
The reaction of MnBr(2) and [PPN](2)[S,S-C(6)H(3)-R] (1:2 molar ratio) in THF yielded [(THF)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (1a), Me (1b); THF = tetrahydrofuran]. Formation of the dimeric [Mn(S,S-C(6)H(3)-R)(2)](2)(2-) [R = H (2a), Me (2b)] was presumed to compensate for the electron-deficient Mn(III) core via two thiolate bridges upon dissolution of complexes 1a and 1b in CH(2)Cl(2). Complex 2a displays antiferromagnetic coupling interaction between two Mn(III) centers (J = -52 cm(-1)), with the effective magnetic moment (mu(eff)) increasing from 0.85 mu(B) at 2.0 K to 4.86 mu(B) at 300 K. The dianionic manganese(II) thiolate complexes [Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (3a), Me (3b)] were isolated upon the addition of [BH(4)](-) into complexes 1a and 1b or complexes 2a and 2b, respectively. The anionic mononuclear {Mn(NO)}(5) thiolatonitrosylmanganese complexes [(NO)Mn(S,S-C(6)H(3)-R)(2)](-) [R = H (4a), Me (4b)] were obtained from the reaction of NO(g) with the anionic complexes 1a and 1b, respectively, and the subsequent reduction of complexes 4a and 4b yielded the mononuclear {Mn(NO)}(6) [(NO)Mn(S,S-C(6)H(3)-R)(2)](2-) [R = H (5a), Me (5b)]. X-ray structural data, magnetic susceptibility measurement, and magnetic fitting results imply that the electronic structure of complex 4a is best described as a resonance hybrid of [(L)(L)Mn(III)(NO(*))](-) and [(L)(L(*))Mn(III)(NO(-))](-) (L = 1,2-benzenedithiolate) electronic arrangements in a square-pyramidal ligand field. The lower IR v(NO) stretching frequency of complex 5a, compared to that of complex 4a (shifting from 1729 cm(-1) in 4a to 1651 cm(-1) in 5a), supports that one-electron reduction occurs in the {(L)(L(*))Mn(III)} core upon reduction of complex 4a.  相似文献   

17.
The synthesis, X-ray crystallography, magnetic properties, and high-field electron paramagnetic resonance (HFEPR) of a new heptanuclear manganese complex [Mn(7)(heamp)(6)](ClO(4))(2)·4CH(2)Cl(2)·H(2)O (complex 2), in which heampH(3) is 2-[N,N-di(2-hydroxyethyl)aminomethyl]phenol (compound 1), is reported. Complex 2 has a hexagonal, disk-shaped topology and contains six Mn(III) ions and a central Mn(II) ion. It crystallizes in the monoclinic space group P2(1)/c with two molecular orientations. Consideration of the cluster topology, together with variable-temperature and variable-field DC magnetic susceptibility data, suggest that complex 2 exists in a half-integer, S = (19)/(2) ± 1 spin ground state, with appreciable uniaxial zero-field splitting (D = -0.16 cm(-1)). AC magnetic susceptibility measurements clearly show out-of-phase signals, which are frequency- and temperature-dependent, indicating slow magnetization relaxation behavior. An analysis of the relaxation data employing the Arrhenius formula yielded an effective relaxation barrier of 12.9 cm(-1). Simulations of HFEPR studies agree with the assignment of an S ≈ (19)/(2) spin ground state, with g = 1.96, D = -4.71 GHz (-0.16 cm(-1)), and a longitudinal fourth-order zero-field splitting parameter B(4)(0) = -2.7 × 10(-4) GHz (-9.0 × 10(-6) cm(-1)).  相似文献   

18.
High-field and frequency electron paramagnetic resonance (HFEPR) of solid (8,12-diethyl-2,3,7,13,17,18-hexamethylcorrolato)manganese(III), 1, shows that in the solid state it is well described as an S = 2 (high-spin) Mn(III) complex of a trianionic ligand, [Mn(III)C(3)(-)], just as Mn(III) porphyrins are described as [Mn(III)P(2)(-)](+). Comparison among the structural data and spin Hamiltonian parameters reported for 1, Mn(III) porphyrins, and a different Mn(III) corrole, [(tpfc)Mn(OPPh(3))], previously studied by HFEPR (Bendix, J.; Gray, H. B.; Golubkov, G.; Gross, Z. J. Chem. Soc., Chem. Commun. 2000, 1957-1958), shows that despite the molecular asymmetry of the corrole macrocycle, the electronic structure of the Mn(III) ion is roughly axial. However, in corroles, the S = 1 (intermediate-spin) state is much lower in energy than in porphyrins, regardless of axial ligand. HFEPR of 1 measured at 4.2 K in pyridine solution shows that the S = 2 [Mn(III)C(3)(-)] system is maintained, with slight changes in electronic parameters that are likely the consequence of axial pyridine ligand coordination. The present result is the first example of the detection by HFEPR of a Mn(III) complex in solution. Over a period of hours in pyridine solution at ambient temperature, however, the S = 2 Mn(III) spectrum gradually disappears leaving a signal with g = 2 and (55)Mn hyperfine splitting. Analysis of this signal, also observable by conventional EPR, leads to its assignment to a manganese species that could arise from decomposition of the original complex. The low-temperature S = 2 [Mn(III)C(3)(-)] state is in contrast to that at room temperature, which is described as a S = 1 system deriving from antiferromagnetic coupling between an S = (3/2) Mn(II) ion and a corrole-centered radical cation: [Mn(II)C(*)(2-)] (Licoccia, S.; Morgante, E.; Paolesse, R.; Polizio, F.; Senge, M. O.; Tondello, E.; Boschi, T. Inorg. Chem. 1997, 36, 1564-1570). This temperature-dependent valence state isomerization has been observed for other metallotetrapyrroles.  相似文献   

19.
Wang ZX  Li XL  Wang TW  Li YZ  Ohkoshi S  Hashimoto K  Song Y  You XZ 《Inorganic chemistry》2007,46(26):10990-10995
A novel zero-dimensional (0D) octacyanotungstate(V)-manganese(II) bimetallic assembly, {[MnII(bipy)2]2(ox)}.{[MnII(bipy)2W(CN)8]2}.4H2O (1) (bipy = 2,2'-bipyridine, ox = C2O42-), was synthesized in methanol solution containing oxalic acid. X-ray analysis shows 1 is crystallized in monoclinic crystal system with C2/c space group and composed of two components of a dimeric Mn2 cation and a quadrate tetrameric Mn2W2 anion. The Mn2 and Mn2W2 moieties are connected by their respective pi-pi stacking to yield the alternative 2D layers, and the 2D layers are linked by hydrogen bonding to form a 3D network. The investigation of the magnetostructural correlation reveals that cyanide and oxalate bridges mediate weak intracluster antiferromagnetic coupling between Mn and W ions and between Mn ions, respectively. Further magnetic measurements and analysis show the spin glasses and intercluster ferromagnetic interaction exist in complex 1.  相似文献   

20.
We study the magnetic properties of two new functionalized single-molecule magnets belonging to the Mn 6 family (general formula [Mn (III)6O2(R-sao)6(O2C-th)2L(4-6)], where R=H (1) or Et (2), HO2C-th=3-thiophene carboxylic acid, L=EtOH, H2O and saoH2 is salicylaldoxime) and their grafting on the Au(111) surface. Complex 1 exhibits spin ground-state S=4, as the result of ferromagnetic coupling between the two antiferromagnetic Mn (III) 3 triangles, while slight structural changes in complex 2, switch the dominant magnetic exchange interactions from anti- to ferromagnetic, enhancing the spin ground-state to S=12 and, consequently, the effective energy barrier for the relaxation of magnetization. Direct-current and alternating-current magnetic susceptibility measurements show that the functionalized complexes preserve the main magnetic properties of the corresponding not-functionalized Mn 6 clusters (i.e., total spin value and magnetic behavior as a function of temperature), though a reduction of the anisotropy barrier is observed in complex 2. For both complexes, the -O2C-th functionalization allows the direct grafting on Au(111) surface by liquid-phase deposition. X-ray photoemission spectroscopy demonstrates that the stoichiometry of the molecular cores is preserved after grafting. Scanning tunneling microscopy (STM) reveals a sub-monolayer distribution of isolated clusters with a slightly higher coverage for complex 1. The cluster stability in the STM images and the S-2p energy positions demonstrate, for both derivatives, the strength of the grafting with the gold surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号