首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A systematic study of the amplified optical detection of DNA by Mg(2+)-dependent DNAzyme subunits is described. The use of two DNAzyme subunits and the respective fluorophore/quencher-modified substrate allows the detection of the target DNA with a sensitivity corresponding to 1 × 10(-9) M. The use of two functional hairpin structures that include the DNAzyme subunits in a caged, inactive configuration leads, in the presence of the target DNA, to the opening of one of the hairpins and to the activation of an autonomous cross-opening process of the two hairpins, which affords polymer DNA wires consisting of the Mg(2+)-dependent DNAzyme subunits. This amplification paradigm leads to the analysis of the target DNA with a sensitivity corresponding to 1 × 10(-14) M. The amplification mixture composed of the two hairpins can be implemented as a versatile sensing platform for analyzing any gene in the presence of the appropriate hairpin probe. This is exemplified with the detection of the BRCA1 oncogene.  相似文献   

2.
Many types of fluorescent sensing systems have been reported for biological small molecules. Particularly, several methods have been developed for the recognition of ATP or NAD(+), but they only show moderate sensitivity, and they cannot discriminate either ATP or NAD(+) from their respective analogues. We have addressed these limitations and report here a dual strategy which combines split DNAzyme-based background reduction with catalytic and molecular beacon (CAMB)-based amplified detection to develop a ligation-triggered DNAzyme cascade, resulting in ultrahigh sensitivity. First, the 8-17 DNAzyme is split into two separate oligonucleotide fragments as the building blocks for the DNA ligation reaction, thereby providing a zero-background signal to improve overall sensitivity. Next, a CAMB strategy is further employed for amplified signal detection achieved through cycling and regenerating the DNAzyme to realize the true enzymatic multiple turnover (one enzyme catalyzes the cleavage of several substrates) of catalytic beacons. This combination of zero-background signal and signal amplification significantly improves the sensitivity of the sensing systems, resulting in detection limits of 100 and 50 pM for ATP and NAD(+), respectively, much lower than those of previously reported biosensors. Moreover, by taking advantage of the highly specific biomolecule-dependence of the DNA ligation reaction, the developed DNAzyme cascades show significantly high selectivity toward the target cofactor (ATP or NAD(+)), and the target biological small molecule can be distinguished from its analogues. Therefore, as a new and universal platform for the design of DNA ligation reaction-based sensing systems, this novel ligation-triggered DNAzyme cascade method may find a broad spectrum of applications in both environmental and biomedical fields.  相似文献   

3.
Nucleic acid subunits consisting of fragments of the horseradish peroxidase (HRP)-mimicking DNAzyme and aptamer domains against ATP or sequences recognizing Hg(2+) ions self-assemble, in the presence of ATP or Hg(2+), into the active hemin-G-quadruplex DNAzyme structure. The DNAzyme-generated chemiluminescence provides the optical readout for the sensing events. In addition, the DNAzyme-stimulated chemiluminescence resonance energy transfer (CRET) to CdSe/ZnS quantum dots (QDs) is implemented to develop aptamer or DNA sensing platforms. The self-assembly of the ATP-aptamer subunits/hemin-G-quadruplex DNAzyme, where one of the aptamer subunits is functionalized with CdSe/ZnS QDs, leads to the CRET signal. Also, the functionalization of QDs with a hairpin nucleic acid that includes the G-quadruplex sequence in a 'caged' configuration is used to analyze DNA. The opening of the hairpin structure by the target DNA assembles the hemin-G-quadruplex DNAzyme that stimulates the CRET signal. By the application of three different sized QDs functionalized with different hairpins, the multiplexed analysis of three different DNA targets is demonstrated by the generation of three different CRET luminescence signals.  相似文献   

4.
A simple, highly sensitive and enzyme-free DNAzyme sensor based on target-catalyzed hairpin assembly is developed, which permits detection of 0.1 pM target DNA. Furthermore, this DNAzyme sensor is capable of detecting target DNA in real samples because of its high selectivity.  相似文献   

5.
Tian Y  Mao C 《Talanta》2005,67(3):532-537
This paper reports an improved catalytic molecular beacon. Addition of the target oligonucleotide activates a DNA enzyme (DNAzyme), which, in turn, activates multiple copies of molecular beacons (MB) and gives rise to a strong fluorescence signal. In a previous design, the activated DNAzyme could oligomerize, especially dimerize, and result in inactivation of the DNAzyme. The current design avoids this problem, upon activated by the target DNA, the DNAzyme will stay constantly active. With the improved method, a detection of 10 pM DNA has been demonstrated, which is 1000 times more sensitive than the method previously reported.  相似文献   

6.
Detection for deoxyribozyme(DNAzyme) cleavage usually needs complex and time-consuming radial labeling,gel electrophoresis and autoradiography.A new approach was reported for detection DNAzyme cleavage product based on molecular beacon (MB).Part of the loop of MB was designed to complementary to DNAzyme cleavage product.MB was employed to monitor ligation process of RNA/DNA complex and to convert directly cleavage product information into fluorescence signal.Detection limit of the assay is 0.02 nmol/L.The cleavage product of 8 -17 DNAzyme against HCV-RNA was detected perfectly based on this assay.The method is fast,simple and ultrasensitive,which might hold great promise in DNAzyme reaction and DNAzyme gene therapy.  相似文献   

7.
The Zn(2+)-dependent ligation DNAzyme is implemented as a biocatalyst for the amplified detection of a target DNA by the autonomous replication of a nucleic acid reporter unit that is generated by the catalyzed ligation process. The reporter units enhance the formation of active DNAzyme units, thus leading to the isothermal autocatalytic formation of the reporter elements. The system was further developed and applied for the amplified detection of Tay-Sachs genetic disorder mutant, with a detection limit of 1.0 × 10(-11) M. Besides providing a versatile paradigm for the amplified detection of DNA, the system reveals a new, enzyme-free, isothermal, autocatalytic mechanism that introduces means for effective programmed synthesis.  相似文献   

8.
Using a Cu(2+)-dependent DNA ligation DNAzyme, a colorimetric sensor for Cu2+ has been developed based on directed assembly of DNA-functionalized gold nanoparticles by the ligation product, and such ligation DNAzyme-based sensors are intrinsically more sensitive than cleavage DNAzyme systems due to the lack of background.  相似文献   

9.
A novel catalytic colorimetric assay assisted by nicking endonuclease signal amplification (NESA) was developed. With the signal amplification, the detection limit of the p53 target gene can be as low as 1 pM, which is nearly 5 orders of magnitude lower than that of other previously reported colorimetric DNA detection strategies based on catalytic DNAzyme.  相似文献   

10.
Qi L  Zhao Y  Yuan H  Bai K  Zhao Y  Chen F  Dong Y  Wu Y 《The Analyst》2012,137(12):2799-2805
In this work, a fluorescent sensing strategy was developed for the detection of mercury(II) ions (Hg(2+)) in aqueous solution with excellent sensitivity and selectivity using a target-induced DNAzyme cascade with catalytic and molecular beacons (CAMB). In order to construct the biosensor, a Mg(2+)-dependent DNAzyme was elaborately designed and artificially split into two separate oligonucleotide fragments. In the presence of Hg(2+), the specific thymine-Hg(2+)-thymine (T-Hg(2+)-T) interaction induced the two fragments to produce the activated Mg(2+)-dependent DNAzyme, which would hybridize with a hairpin-structured MB substrate to form the CAMB system. Eventually, each target-induced activated DNAzyme could catalyze the cleavage of many MB substrates through true enzymatic multiple turnovers. This would significantly enhance the sensitivity of the Hg(2+) sensing system and push the detection limit down to 0.2 nM within a 20 min assay time, much lower than those of most previously reported fluorescence assays. Owning to the strong coordination of Hg(2+) to the T-T mismatched pairs, this proposed sensing system exhibited excellent selectivity for Hg(2+) detection, even in the presence of 100 times of other interferential metal ions. Furthermore, the applicability of the biosensor for Hg(2+) detection in river water samples was demonstrated with satisfactory results. These advantages endow the sensing strategy with a great potential for the simple, rapid, sensitive, and specific detection of Hg(2+) from a wide range of real samples.  相似文献   

11.
A novel nucleic acid hairpin structure composed of Pb(2+)-dependent DNAzyme and HRP-mimicking DNAzyme was developed. This hairpin structure can be used as a sensor for the detection of Pb(2+) based on colorimetry.  相似文献   

12.
A novel G-quadruplex DNAzyme-driven chemiluminescence (CL) imaging method was developed for ultrasensitive and specific detection of miRNA based on the cascade exponential isothermal amplification reaction (EXPAR) machinery. A structurally tailored hairpin probe switch was designed to selectively recognise miRNA and form hybridisation products to trigger polymerase and nicking enzyme machinery, resulting in the generation of product I, which was complementary to a region of the functional linear template. Then, the response of the functional linear template to the generated product I further activated the exponential isothermal amplification machinery, leading to synthesis of numerous horseradish peroxidase mimicking DNAzyme units for CL signal transduction. The amplification paradigm generated a linear response from 10 fM to 100 pM, with a low detection limit of 2.91 fM, and enabled discrimination of target miRNA from a single-base mismatched target. The developed biosensing platform demonstrated the advantages of isothermal, homogeneous, visual detection for miRNA assays, offering a promising tool for clinical diagnosis.  相似文献   

13.
Polymerase/nicking enzymes and nucleic‐acid scaffolds are implemented as DNA machines for the development of amplified DNA‐detection schemes, and for the design of logic gates. The analyte nucleic acid target acts, also, as input for the logic gates. In the presence of two DNA targets, acting as inputs, and appropriate DNA scaffolds, the polymerase‐induced replication of the scaffolds, followed by the nicking of the replication products, are activated, leading to the autonomous synthesis of the Mg2+‐dependent DNAzyme or the Mg2+‐dependent DNAzyme subunits. These biocatalysts cleave a fluorophore/quencher‐functionalized nucleic‐acid substrate, thus providing fluorescence signals for the sensing events or outputs for the logic gates. The systems are used to develop OR, AND, and Controlled‐AND gates, and the DNA‐analyte targets represent two nucleic acid sequences of the smallpox viral genome.  相似文献   

14.
Li J  Yao QH  Fu HE  Zhang XL  Yang HH 《Talanta》2011,85(1):91-96
Horseradish peroxidase mimicking DNAzyme (HRP-DNAzyme) attracts growing interest as an amplifying label for biorecognition and biosensing events, especially for DNA detection. However, in the traditional designs, one target molecule can only generate one HRP-DNAzyme, which limits the signal enhancement and thus its sensitivity. In this article, we propose an amplified and label-free colorimetric DNA detection strategy based on nicking endonuclease (NEase)-assisted activation of HRP-DNAzymes (NEAA-DNAzymes). This new strategy relies on the hairpin-DNAzyme probe and NEase-assisted target recycling. In the hairpin-DNAzyme probe, the HRP-DNAzyme sequence is protected in a “caged” inactive structure, whereas the loop region includes the target complementary sequence. Upon hybridization with target, the beacon is opened, resulting in the activation of the HRP-DNAzyme. Meanwhile, upon formation of the duplex, the NEase recognizes a specific nucleotide sequence and cleaves the hairpin-DNAzyme probe into two fragments. After nicking, the fragments of the hairpin-DNAzyme probe spontaneously dissociate from the target DNA. Amplification is accomplished by another hairpin-DNAzyme probe hybridizing to the released intact target to continue the strand-scission cycle, which results in activation of numerous DNAzymes. The activated HRP-DNAzymes generate colorimetric or chemiluminescence readout signals, thus providing the amplified detection of DNA. The detection limit of the colorimetric method is 10 pmol/L, which are three orders of magnitude lower than that without NEase. In addition, the detection limit of the chemiluminescence method is 0.2 pmol/L. Meanwhile, this strategy also exhibits high discrimination ability even against single-base mismatch.  相似文献   

15.
Guo Q  Bao Y  Yang X  Wang K  Wang Q  Tan Y 《Talanta》2010,83(2):500-504
A novel electrochemical DNA sensor was developed here by using peroxidase-like G-quadruplex-based DNAzyme as a biocatalytic label. A hairpin structure including the G-quadruplex-based DNAzyme in a caged configuration and the target DNA probe were immobilized on Au-electrode surface. Upon hybridization with the target, the hairpin structure was opened, and the G-quadruplex-based DNAzyme was generated on the electrode surface, triggering the electrochemical oxidization of hydroquinone by H2O2, which provide a quantitative measure for the detection of the target DNA. The DNA target was analyzed with a detection limit of 0.6 nM. This method is simple and easy to design without direct conjugation of redox-active element.  相似文献   

16.
赵永席  齐林  杨卫军  魏帅  王亚玲 《分析化学》2012,40(8):1236-1240
利用核酸切割酶(Nicking endonuclease)识别特定DNA双链并切割其中某条单链的性质,构建了基于8-17E脱氧核酶(8-17E DNAzyme)的pb2+荧光循环放大检测方法.pb2+可激活8-17E脱氧核酶水解RNA底物,产生并释放出的单链与分子信标探针( Molecular beacon,MB)杂交,导致其茎环结构被破坏,荧光信号恢复;同时形成含有核酸切割酶Nt.BbvCI识别位点的双链区域.在核酸切割酶Nt.BbvCI的作用下,分子信标探针被切割释放,游离出来的单链可与其它分子信标重新杂交,从而触发下一轮酶切,引起荧光检测信号的循环放大.本方法避免了8-17E脱氧核酶与底物链的修饰,最低可以检测出水溶液中1.0×10-10 mol/L Pb2+,并在2倍浓度的Zn2+,以及5倍浓度的其它干扰金属离子存在的情况下对pb2+显示出良好的选择性.本方法对环境水样中pb2+的标准加样回收率为96.1%~108.0%.  相似文献   

17.
A novel enzyme-free amplification strategy was designed for sensitive electrochemical detection of deoxyribonucleic acid (DNA) based on Zn2+ assistant DNA recycling via target-triggered assembly of mutated DNAzyme. A gold electrode was used to immobilize molecular beacon (MB) as the recognition probe and perform the amplification procedure. In the presence of target DNA, the hairpin probe 1 was opened, and the DNAzyme was liberated from the caged structure. The activated DNAzyme first hybridized and then cleaved the MB in the presence of cofactor Zn2+. After cleavage, the MB was cleaved into two pieces and the ferrocene (Fc) labeled piece dissociated from the gold electrode, thus obviously decreasing the Fc signal and forming a free DNAzyme strand. Finally, each target-induced activated DNAzyme underwent many cycles to trigger the cleavage of many MB substrates. Therefore, the peak current of Fc dramatically decreased to approximately zero. The strategy showed a detection limit at 35 fM levels, which was about 2 orders of magnitude lower than that of the conventional hybridization without Zn2+-based amplification. The Zn2+ assistant DNA recycling offers a versatile platform for DNA detection in a cost-effective manner, and has a promising application in clinical diagnosis.  相似文献   

18.
Miao X  Ling L  Cheng D  Shuai X 《The Analyst》2012,137(13):3064-3069
Copper ion (Cu(2+)) plays an important role in many biological reactions, and a suitable level of Cu(2+) is necessary for the regular metabolism of life. Thus developing a sensitive and simple method for determination of Cu(2+) is essential. Here, a novel and sensitive Cu(2+) sensor was developed based on detecting the average hydrodynamic diameter of AuNPs by using dynamic light scattering (DLS). Cu(2+)-specific DNAzyme was double-strand and could not adsorb on the surface of AuNPs, accordingly AuNPs aggregation would occur with the addition of NaCl. However, Cu(2+) could cleave DNAzyme and release single-stranded DNA (ssDNA) fragments, which could adsorb on the surface of AuNPs and prevent them from aggregation. Such differences in DNA adsorption ability on AuNPs before and after the addition of Cu(2+) affected the disperse state of AuNPs directly, and then affected their average hydrodynamic diameter, which could be detected with the DLS technique. Based upon the above mentioned principle, detection of Cu(2+) could be realized over the range from 100 pM to 2.0 nM, with a linear regression equation of D = 306.73 - 89.66C (C: nM, R = 0.9953) and a detection limit of 60 pM (3δ/slope). Moreover, satisfactory results were obtained when the assay was applied in the detection of Cu(2+) in water samples.  相似文献   

19.
Ma C  Tang Z  Huo X  Yang X  Li W  Tan W 《Talanta》2008,76(2):458-461
Traditional methods to assay enzymatic cleavage of DNA are discontinuous, time-consuming and laborious. Here, we report a new approach for real-time monitoring of double-stranded DNA cleavage by restriction endonuclease based on nucleic acid ligation using molecular beacon. Upon cleavage of DNA, the cleavage product can be ligated by DNA ligase, which results in a fluorescence enhancement of the molecular beacon. This method permits real-time monitoring of DNA cleavage and makes it easy to characterize the activity of restriction endonuclease and to study the cleavage reaction kinetics.  相似文献   

20.
The DNA nick repair catalyzed by DNA ligase is significant for fundamental life processes, such as the replication, repair, and recombination of nucleic acids. Here, we have employed ligase to regulate DNAzyme activity and developed a homogeneous, colorimetric, label‐free and DNAzyme‐based strategy to detect DNA ligase activity. This novel strategy relies on the ligation‐trigged activation or production of horseradish peroxidase mimicking DNAzyme that catalyzes the generation of a color change signal; this results in a colorimetric assay of DNA ligase activity. Using T4 DNA ligase as a model, we have proposed two approaches to demonstrate the validity of the DNAzyme strategy. The first approach utilizes an allosteric hairpin‐DNAzyme probe specifically responsive to DNA ligation; this approach has a wide detection range from 0.2 to 40 U mL?1 and a detection limit of 0.2 U mL?1. Furthermore, the approach was adapted to probe nucleic acid phosphorylation and single nucleotide mismatch. The second approach employs a “split DNA machine” to produce numerous DNAzymes after being reassembled by DNA ligase; this greatly enhances the detection sensitivity by a signal amplification cascade to achieve a detection limit of 0.01 U mL?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号