首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major hurdle associated with utilizing oligodeoxyribonucleotides for therapeutic purposes is their poor delivery into cells coupled with high nuclease susceptibility. In an attempt to combine the nonionic nature and high nuclease stability of the P-C bond of methylphosphonates with the high membrane permeability, low toxicity, and improved gene silencing ability of borane phosphonates, we have focused our research on the relatively unexplored methylborane phosphine (Me-P-BH(3)) modification. This Article describes the automated solid-phase synthesis of mixed-backbone oligodeoxynucleotides (ODNs) consisting of methylborane phosphine and phosphate or thiophosphate linkages (16-mers). Nuclease stability assays show that methylborane phosphine ODNs are highly resistant to 5' and 3' exonucleases. When hybridized to a complementary strand, the ODN:RNA duplex was more stable than its corresponding ODN:DNA duplex. The binding affinity of ODN:RNA duplex increased at lower salt concentration and approached that of a native DNA:RNA duplex under conditions close to physiological saline, indicating that the Me-P-BH(3) linkage is positively charged. Cellular uptake measurements indicate that these ODNs are efficiently taken up by cells even when the strand is 13% modified. Treatment of HeLa cells and WM-239A cells with fluorescently labeled ODNs shows significant cytoplasmic fluorescence when viewed under a microscope. Our results suggest that methylborane phosphine ODNs may prove very valuable as potential candidates in antisense research and RNAi.  相似文献   

2.
Several thermolytic CpG-containing DNA oligonucleotides analogous to 1 have been synthesized to serve as potential immunotherapeutic oligonucleotide prodrug formulations for the treatment of infectious diseases in animal models. Specifically, the CpG motif (GACGTT) of each DNA oligonucleotide has been functionalized with either the thermolabile 4-hydroxy-1-butyl or the 4-phosphato-/thiophosphato-1-butyl thiophosphate protecting group. This functionalization was achieved through incorporation of activated deoxyribonucleoside phosphoramidite 8b into the oligonucleotide chain during solid-phase synthesis and, optionally, through subsequent phosphorylation effected by phosphoramidite 9. Complete conversion of CpG ODNs hbu1555, psb1555, and pob1555 to CpG ODN 1555 (homologous to 2) occurred under elevated temperature conditions, thereby validating the function of these diastereomeric oligonucleotides as prodrugs in vitro. Noteworthy is the significant increase in solubility of CpG ODN psb1555 and CpG pob1555 in water when compared to that of neutral CpG ODN fma1555 (homologous to 1).  相似文献   

3.
We demonstrated that 5-vinyldeoxyuridine ((V)U) and 5-carboxyvinyldeoxyuridine ((CV)U) can be used to photoligate a longer oligonucleotide (ODN) from smaller ODNs on a template. By performing irradiation at 366 nm, these artificial nucleotides make photoligated ODNs with high efficiency without any side reactions. Moreover, by performing irradiation at 312 nm, these photoligated ODNs were reversed to the original ODN. (V)U needs to be irradiated 366 nm for 6 h, but (CV)U needs to be irradiated at 366 nm for 15 min. Finally, we made a self-assembled structure with an ODN containing (CV)U and observed the photoligated ODN by photoirradiation.  相似文献   

4.
Oligonuclecotides bearing phosphoramidate internucleotide linkages can be prepared chemically by standard solid-phase DNA synthesis. Thus, phosphoramidate internucleotide bonds can be placed at will into specific positions within a given DNA fragment. The backbone-modified DNA fragments prepared in this way are susceptible to a specific chemical cleavage.  相似文献   

5.
We report herein a versatile postsynthetic modification of on-column oligodeoxynucleotides (ODNs) using a copper-catalyzed oxidative acetylenic coupling reaction. Hexamers supported on resins via a methylamino-modified linker were prepared, and on-column modifications of ODNs were examined. ArgoPore resin proved to be the best choice for the modification, and introduction of functional molecules, such as anthraquinone, biotin, and fluorescein, resulted in good yields at not only the 5'-terminal but also the internal 3'-end of the ODNs. This method is applicable to the modification of 12mer ODN consisting of a random sequence. The resulting ODN9 possessing fluorescein at its 5'-terminal acts as a non-RI primer for primer extension assays using the Klenow fragment.  相似文献   

6.
An analytical method for the structure differentiation of arylamine modified oligonucleotides (ODNs) using on-line LC/MS analysis of raw exonuclease digests is described. Six different dodeca ODNs derived from the reaction of N-acetoxy-N-(trifluoroacetyl)-2-aminofluorene with the dodeca oligonucleotide 5'-CTCGGCGCCATC-3' are isolated and sequenced with this LC/MS method using 3'- and 5'-exonucleases. When the three products modified by a single aminofluorene (AF) are subjected to 3'-exonuclease digestion, the exonuclease will cleave a modified nucleotide but when di-AF modified ODNs are analyzed the 3'-exonuclease ceases to cleave nucleotides when the first modification is exposed at the 3'-terminus. Small abundances of ODN fragments formed by the cleavage of an AF-modified nucleotide were observed when two of the three di-AF modified ODNs were subjected to 5'-exonuclease digestion. The results of the 5'-exonuclease studies of the three di-AF modified ODNs suggest that as the number of unmodified bases between two modifications in an ODN sequence increases, the easier it becomes to sequence beyond the modification closest to the 5'-terminus. The results of this study indicate that the LC/MS method described here would be useful in sequencing ODNs modified by multiple arylamines to be used as templates for site-specific mutagenesis studies.  相似文献   

7.
A new strategy has been developed for conjugation of peptides to oligonucleotides. The method is based on the "native ligation" of an N-terminal thioester-functionalized peptide to a 5'-cysteinyl oligonucleotide. Two new reagents were synthesized for use in solid-phase peptide and oligonucleotide synthesis, respectively. Pentafluorophenyl S-benzylthiosuccinate was used in the final coupling step in standard Fmoc-based solid-phase peptide assembly. Deprotection with trifluoracetic acid generated in solution peptides substituted with an N-terminal S-benzylthiosuccinyl moiety. O-trans-4-(N-alpha-Fmoc-S-tert-butylsulfenyl-L-cysteinyl)aminoc yclohe xyl O-2-cyanoethyl-N,N-diisopropylphosphoramidite was used in the final coupling step in standard phosphoramidite solid-phase oligonucleotide assembly. Deprotection with aqueous ammonia solution generated in solution 5'-S-tert-butylsulfenyl-L-cysteinyl functionalized oligonucleotides. Functionalized peptides and oligonucleotides were used without purification in native ligation conjugation reactions in aqueous/organic solution using tris-(2-carboxyethyl)phosphine to remove the tert-butylsulfenyl group in situ and thiophenol as a conjugation enhancer. A range of peptide-oligonucleotide conjugates were prepared by this route and purified by reversed-phase HPLC.  相似文献   

8.
Treatment of dendriplexes formed between water-soluble carbosilane dendrimers and phosphorothioate oligodeoxynucleotides (ODN) with the anionic detergent sodium dodecyl sulfate disrupted the complexes indicating that the nature of the union in such dendriplexes is merely electrostatic. However, dendriplexes were not dissociated by serum proteins like bovine or human serum albumins, as assessed by gel electrophoresis and fluorescence experiments. This would imply a dendrimer-mediated protective effect able to prevent ODN interactions with serum proteins and additionally could translate into a reduction of the ODN doses needed to achieve the biological effects. The employment of carbosilane dendrimers as carriers may solve the problem of ODN kidnapping by plasmatic proteins as a key drawback for therapeutics involving ODNs. As examples, transfection processes on normal primary peripheral blood cells and diagnosis of HIV infection in the presence of serum have been assayed.  相似文献   

9.
A series of 1,2,3-triazolyl nucleoside analogues in which 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via polymethylene linkers to both nitrogen atoms of the heterocycle moiety (uracil, 6-methyluracil, thymine, quinazoline-2,4-dione, alloxazine) or to the C-5 and N-3 atoms of the 6-methyluracil moiety was synthesized. All compounds synthesized were evaluated for antiviral activity against influenza virus A/PR/8/34/(H1N1) and coxsackievirus B3. Antiviral assays revealed three compounds, 2i, 5i, 11c, which showed moderate activity against influenza virus A H1N1 with IC50 values of 57.5 µM, 24.3 µM, and 29.2 µM, respectively. In the first two nucleoside analogues, 1,2,3-triazol-4-yl-β-d-ribofuranosyl fragments are attached via butylene linkers to N-1 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine, respectively). In nucleoside analogue 11c, two 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached via propylene linkers to the C-5 and N-3 atoms of the 6-methyluracil moiety. Almost all synthesized 1,2,3-triazolyl nucleoside analogues showed no antiviral activity against the coxsackie B3 virus. Two exceptions are 1,2,3-triazolyl nucleoside analogs 2f and 5f, in which 1,2,3-triazol-4-yl-2′,3′,5′-tri-O-acetyl-β-d-ribofuranose fragments are attached to the C-5 and N-3 atoms of the heterocycle moiety (6-methyluracil and alloxazine respectively). These compounds exhibited high antiviral potency against the coxsackie B3 virus with IC50 values of 12.4 and 11.3 µM, respectively, although both were inactive against influenza virus A H1N1. According to theoretical calculations, the antiviral activity of the 1,2,3-triazolyl nucleoside analogues 2i, 5i, and 11c against the H1N1 (A/PR/8/34) influenza virus can be explained by their influence on the functioning of the polymerase acidic protein (PA) of RNA-dependent RNA polymerase (RdRp). As to the antiviral activity of nucleoside analogs 2f and 5f against coxsackievirus B3, it can be explained by their interaction with the coat proteins VP1 and VP2.  相似文献   

10.
A simple and powerful method for the determination of labeling sites on oligodeoxynucleotides (ODN) has been developed. The method is based on the finding that nuclease P1 (NP1) digestions of label-containing ODNs produce site-specific products: 5′-labeled ODNs produce label-nucleotide (L-N); 3′-labeled ODN produces phosphorylated label (pL); and a label in between the ODN termini produces pL-N. Mass spectrometry spectra of these products from the digestion mixture can be easily utilized for structural verification of labeled ODNs such as DNA probes. We also developed a method for the determination of the labeling sites of ODNs with unknown label structures. In this method, NP1 digestion products generate site-specific fragmentation patterns upon collision-induced dissociation. These patterns can be easily recognized and used for the identification of labeling sites of ODNs with unknown label structures. When an ODN is internally labeled, phosphodiesterase digestion may be used to determine the exact labeling site (sequence location). It was demonstrated that these methods can be applied for ODNs with single or multiple labels, and for ODNs with the same or different labels within an ODN.  相似文献   

11.
We report the ring-opening copolymerization of maleic anhydride with a variety of epoxides catalyzed by a chromium(III) salen complex. Quantitative isomerization of the cis-maleate form of all polymers affords the trans-fumarate analogues. Addition of chain transfer reagents yields low M(n), narrow PDI polymer samples. This method provides access to a range of new unsaturated polyesters with versatile functionality, as well as the first synthesis of high molecular weight poly(propylene fumarate).  相似文献   

12.
O(6)-(Benzotriazol-1H-yl)guanosine and its 2'-deoxy analogue are readily converted to the O(6)-allyl derivatives that upon diazotization with t-BuONO and TMS-N(3) yield the C-2 azido derivatives. We have previously analyzed the solvent-dependent azide·tetrazole equilibrium of C-6 azidopurine nucleosides, and in contrast to these, the O(6)-allyl C-2 azido nucleosides appear to exist predominantly in the azido form, relatively independent of solvent polarity. In the presently described cases, the tetrazole appears to be very minor. Consistent with the presence of the azido functionality, each neat C-2 azide displayed a prominent IR band at 2126-2130 cm(-1). A screen of conditions for the ligation of the azido nucleosides with alkynes showed that CuCl in t-BuOH/H(2)O is optimal, yielding C-2 1,2,3-triazolyl nucleosides in 70-82% yields. Removal of the silyl groups with Et(3)N·3HF followed by deallylation with PhSO(2)Na/Pd(PPh(3))(4) gave the C-2 triazolylinosine nucleosides. In a continued demonstration of the versatility of O(6)-(benzotriazol-1H-yl)purine nucleosides, one C-2 triazolylinosine derivative was converted to two adenosine analogues via these intermediates, under mild conditions. Products were desilylated for biological assays. The two C-2 triazolyl adenosine analogues demonstrated pronounced antiproliferative activity in human ovarian and colorectal carcinoma cell cultures. When evaluated for antiviral activity against a broad spectrum of DNA and RNA viruses, some of the C-2 triazolylinosine derivatives showed modest inhibitory activity against cytomegalovirus.  相似文献   

13.
A breadth of strategies are needed to efficiently modify oligonucleotides with peptides or lipids to capitalize on their therapeutic and diagnostic potential, including the modulation of in vivo chemical stability and for applications in cell-targeting and cell-permeability. The chemical linkages typically used in peptide oligonucleotide conjugates (POCs) have limitations in terms of stability and/or ease of synthesis. Herein, we report an efficient method for POC synthesis using a diselenide-selenoester ligation (DSL)-deselenization strategy that rapidly generates a stable amide linkage between the two biomolecules. This conjugation strategy is underpinned by a novel selenide phosphoramidite building block that can be incorporated into an oligonucleotide by solid-phase synthesis to generate diselenide dimer molecules. These can be rapidly ligated with peptide selenoesters and, following in situ deselenization, lead to the efficient generation of POCs. The diselenide within the oligonucleotide also serves as a flexible functionalisation handle that can be leveraged for fluorescent labelling, as well as for alkylation to generate micelles.

An efficient and versatile approach for the late-stage generation of oligonucleotide conjugates by diselenide-selenoester ligation (DSL)–deselenization/alkylation was developed.  相似文献   

14.
The reaction of 4,6-diazido-2-(4-methoxyphenyl)pyrimidine with cyanoacetic ester in the presence of triethylamine leads only to 4-azido-6-amino-1-(4-methoxyphenyl)pyrimidine. The main product in reactions with 1,3-dicarbonyl compounds (acetylacetone, acetoacetic and benzoylacetic esters) is the corresponding substituted 4,6-bis(1H-1,2,3-triazolyl)pyrimidine. The formation of 4-azido-6-(1H-1,2,3-triazolyl)pyrimidine and 4-amino-6-(1H-1,2,3-triazolyl)pyrimidine as minor products was also recorded.Novosibirsk Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 8, pp. 1109–1114, August, 1997.  相似文献   

15.
A novel solid-phase phosphoramidite-based method has been developed for the synthesis of borane phosphonate DNA. Keys to this new approach are replacement of the common 5'-dimethoxytrityl blocking group with a 5'-silyl ether and the use of new protecting groups on the bases (adenine, N6-dimethoxytrityl; cytosine, N4-trimethoxytrityl; guanine, N2-[9-fluorenylmethoxycarbonyl]; thymine, N3-anisoyl). Because of these developments, it is now possible for the first time to synthesize oligodeoxynucleotides having any combination of the four 2'-deoxynucleosides and both phosphate and borane phosphonate internucleotide linkages (including oligomers having exclusively borane phosphonate linkages).  相似文献   

16.
[reaction: see text] We describe an efficient template-directed photoligation of oligodeoxynucleotides (ODNs) using alpha-5-cyanovinyldeoxyuridine (alpha(C)U). An efficient photoligation was produced by photoirradiation of an ODN containing alpha(C)U at the 3' end with an ODN containing thymine at the 5' end in the presence of a template ODN. This photoligation method is a new and efficient way to synthesize branched ODNs.  相似文献   

17.
Boratabenzene-derived metallocene analogues are introduced as versatile new building blocks for metallopolymers. Bis(borinato)iron(II) complexes of the type Fe(C(5)H(5)B-R)(2) (R: C≡CH, C≡CSiMe(3), 4-(1-benzyl-1,2,3-triazolyl) were synthesized and spectroscopically, structurally, and electrochemically characterized. Polymerization via Sonogashira-Hagihara coupling of the alkynyl-substituted derivative Fe(C(5)H(5)B-C≡CH)(2) with 2,5-bis(dodecyloxy)-1,4-diiodobenzene yields a film-forming polymer in 50-69% yield. Polymer batches were obtained with number-average molecular weights (M(n)) of 11.7 and 20.5 kDa and polydispersity indices (PDI) of 1.55 and 2.65, respectively, as determined by gel permeation chromatography relative to polystyrene standards. Click-type polymerization of Fe(C(5)H(5)B-C≡CH)(2) through azide-alkyne cycloaddition with 1,4-bis(4-azidobutoxy)benzene gives the corresponding metallopolymer with an M(n) of 5.7 kDa and a PDI of 2.29 in 87% yield.  相似文献   

18.
We have used a photocaging strategy to develop novel phosphoramidites and expand the repertoire of protecting groups for modification of oligonucleotides by solid-phase synthesis. We synthesised five photolabile phosphoramidites and four new photolabile controlled pore glasses (CPGs). By using these photolabile phosphoramidites and CPGs, modified oligodeoxynucleotides (ODNs) with phosphate, amine, acid, thiol and carbonyl moieties at 5' and/or 3' ends were readily synthesised. To the best of our knowledge, this is the first report of introducing a carbonyl at the 5' end and thiol groups at both ends of ODNs with photolabile modifiers. Terminal labelling was also easily realised in solution or by on-column solid-phase synthesis. By using the photolabile amine modifier and the photolabile acid CPG, cyclisation of an oligodeoxynucleotide was achieved with good yields. This study provides an alternative way to introduce functional groups into oligonucleotides and expand the scope of oligonucleotide bio-orthogonal labelling.  相似文献   

19.
An efficient solid-phase synthesis of mono-N-substituted piperazines is presented. The key transformation involves a selective borane amide bond reduction in the presence of a carbamate resin linkage. This synthetic route takes advantage of the large diverse pool of commercially available carboxylic acids, acid chlorides, and sulfonyl chlorides. The solid-phase approach facilitates parallel processing by eliminating the need for column chromatography after each synthetic step. The N-monosubstituted piperazines were shown to react with polymeric activated tetrafluorophenol (TFP) reagents to generate arrays of amides and sulfonamides in good purity for biological testing.  相似文献   

20.
Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2′-O,4′-C-Methylene-bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP ( BH )) was previously reported. Herein, a novel BH analogue, 2′,4′-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO ( BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104-, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2′-deoxycytidine ( C ), 2′,4′-BNA/LNA with 5-methylcytosine ( L ), or 2′-deoxyribonucleoside with G-clamp ( PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3′-exonuclease than ODNs with phosphorothioate linkages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号