首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The equation of state of ZnO with rocksalt phase under high pressure and high temperature was calculated by using the molecular dynamics method with effective pair potentials which consist of the Coulomb, dispersion, and repulsion interaction. It was shown that molecular dynamics simulation is very successful in accurately reproducing the measured molar volumes of the rocksalt phase of ZnO over a wide range of temperatures and pressures. The simulated P-V -T data matched experimental results up to 10.4 GPa and 1273 K. In addition, the linear thermal expansion coe±cient, isothermal bulk modulus and its pressure derivative were also calculated and compared with available experimental data and the latest theoretical results at ambient condition. At extended temperature and pressure ranges, the P-V -T relationship, linear thermal expansion coe±cient, and isothermal bulk modulus were predicted up to 2273 K and 50 GPa. The detailed knowledge of thermodynamic behavior and equations of state at extreme conditions are of fundamental importance to the understanding of the physical properties of ZnO.  相似文献   

2.
When a liquid and its vapor contact a smooth, homogeneous surface, Gibbsian thermodynamics indicates that the contact angle depends on the pressure at the three-phase line of an isothermal system. When a recently proposed adsorption isotherm for a solid-vapor interface is combined with the equilibrium conditions and the system is assumed to be in a cylinder where the liquid-vapor interface can be approximated as spherical, the contact-angle-pressure relation can be made explicit. It indicates that a range of contact angles can be observed on a smooth homogeneous surface by changing the pressure at the three-phase line, but it also indicates that the adsorption at the solid-liquid interface is negative, and leads to the prediction that the contact angle increases with pressure. The predicted dependence of the contact angle on pressure is investigated experimentally in a system that has an independent mechanism for determining when thermodynamic equilibrium is reached. The predictions are in agreement with the measurements. The results provide a possible explanation for contact angle hysteresis.  相似文献   

3.
Ionic mobility, the thermodynamics of ionic association, and the structure of associated species are studied in solutions of diglyme containing either lithium triflate or tetrabutylammonium triflate. Infrared spectroscopic, PFG NMR, thermodynamic, and crystallographic data suggest that the solute species existing in diglyme-lithium triflate are "free" ions, contact ion pairs, and dimers. Equilibrium constants, S(o), deltaH(o), and deltaG(o) are calculated for processes occurring between these species. In particular, the equilibrium constant, corrected for nonideality using a modified Debye-Hückel expression, is calculated for the dissociation of contact ion pairs into "free" cations and anions. A second equilibrium constant for the formation of dimers from contact ion pairs is also calculated; these constants do not significantly vary with salt concentration up to about 1.3 x 10(-3) mol cm(-3). The measured temperature dependence of equilibrium constants was used to calculate deltaH(o) and deltaS(o) for the two processes. The value of deltaS(o) = -102 J mol(-1) K(-1) for the dissociation of contact ion pairs shows that the large entropy decrease due to cation solvation outweighs the entropy increase due to dissociation of a contact ion pair. Ionic mobilities are calculated in lithium triflate-diglyme solutions using conductivity data in conjunction with information about the nature and concentrations of solute species obtained from IR spectroscopy. Mobilities in tetrabutlyammonium triflate-diglyme solutions are calculated directly from conductivity data. It was concluded that the concentration dependence of the molar conductivity is due in large part to the variation of the ion mobilities with concentration.  相似文献   

4.
It has been found experimentally that superhydrophobic surfaces exhibit strong anisotropic wetting behavior. This study reports a simple but robust thermodynamic methodology to investigate the anisotropic superhydrophobic behavior for parallel grooved surfaces. Free energy and its barrier and the corresponding contact angle and its hysteresis for various orientations of the groove structure are calculated based on the proposed thermodynamic model. It is revealed that the strong anisotropy of equilibrium contact angle (ECA) and contact angle hysteresis (CAH) is shown in the noncomposite state but almost isotropic wetting properties are exhibited in the composite state. Furthermore, for the noncomposite state, decreasing groove width and spacing or increasing groove depth can amplify the anisotropy for ECA. Meanwhile, decreasing groove width and increasing depth can amplify the anisotropy for CAH, while varying groove spacing can barely influence CAH. For the composite state, however, the surface geometry hardly leads to the anisotropic behavior. In addition, using a fitting approximation, a simple quantitative correlation between wettability and orientation can be established well, which is consistent with the numerical calculations.  相似文献   

5.
Water vapor adsorption and heats of water wetting are studied for hydrophilic quartz, hydrophobic-hydrophilic talc, and hydrophobized Silochrom samples. Water contact angles on the materials under examination are found. The surface thermodynamic parameters of the sorbents are calculated from the data obtained. It is shown that boundary water layers on hydrophilic quartz surface are ordered to a higher extent, while those on hydrophobic basal surfaces of talc particles and hydrophobic surfaces of modified Silochrom samples are ordered to a lower extent relative to liquid water. An empirical equation relating the surface pressure of water films adsorbed on hydrophilic high-energy surfaces with the surface free energy of the latter is proposed. The values of surface free energy are estimated from this equation for a number of important hydrophilic adsorbents.  相似文献   

6.
As-placed contact angle is the contact angle a drop adapts as a result of its placement on a surface. As expected, the as-placed contact angle, thetaAP, of a sessile drop on a horizontal surface decreases with the drop size due to the increase in hydrostatic pressure. We present a theoretical prediction for thetaAP which shows that it is a unique function of the advancing contact angle, thetaA, drop size, and material properties (surface tensions and densities). We test our prediction with published and new data. The theory agrees with the experiments. From the relation of the as-placed contact angle to drop size the thermodynamic equilibrium contact angle is also calculated.  相似文献   

7.
The thermoelastic properties of MgO over a wide range of pressure and temperature are studied using the first-principles plane wave pseudopotential method within the generalized gradient approximation. It is shown that MgO remains in the B1 (NaCl) structure at all pressures existing within the Earth, and transforms into the CsCl-type structure at 397 GPa. The athermal elastic moduli of MgO are calculated, as a function of pressure up to 150 GPa. The calculated results are in excellent agreement with experimental data at zero pressure and compare favorably with other pseudopotential predictions over the pressure regime studied. MgO is found to be highly anisotropic in its elastic properties, with the magnitude of the anisotropy first decreasing between 0 and 20 GPa and then increasing from 20 GPa to 150 GPa. The Cauchy condition is found to be strongly violated in MgO, reflecting the importance of noncentral many-body forces. The thermodynamic properties of MgO are consistent with the experimental data at ambient condition.  相似文献   

8.
9.
胡燕飞  孔凡杰  周春 《物理化学学报》2008,24(10):1845-1849
利用第一性原理平面波模守恒赝势密度泛函理论研究了3C-SiC的结构, 其零温(0 K)零压下的晶格常数、体弹模量及其对压强的一阶导数、弹性常数的计算结果与实验值和其它理论计算结果相符合. 通过准谐德拜模型, 得到了不同温度不同压强下的热容和德拜温度, 发现热容随着压强增加而减小, 德拜温度随压强增加而增加, 并成功地获得了相对晶格常数、相对体积、体弹模量、热膨胀系数与温度和压强的关系.  相似文献   

10.
Molecular dynamics simulations have been performed to examine the thermodynamic properties of methane/water interface using two different water models, the TIP4P/2005 and SPC/E, and two sets of combining rules. The density profiles, interfacial tensions, surface excesses, surface pressures, and coexisting densities are calculated over a wide range of pressure conditions. The TIP4P/2005 water model was used, with an optimized combining rule between water and methane fit to the solubility, to provide good predictions of interfacial properties. The use of the infinite dilution approximation to calculate the surface excesses from the interfacial tensions is examined comparing the surface pressures obtained by different approaches. It is shown that both the change of methane solubilities in pressure and position of maximum methane density profile at the interface are independent of pressure up to about 2 MPa. We have also calculated the adsorption enthalpies and entropies to describe the temperature dependency of the adsorption.  相似文献   

11.
The effects of shape and eccentricity on adhesion and detachment behavior of long, rodlike particles in contact with a half-space are analyzed using contact mechanics. The particles are considered to have cross sections that are squarish, oblate, or prolate rather than circular. Such cross sections are represented very generally by using superellipses. The contact mechanics model allows deduction of closed-form expressions for the contact pressure, load-contact size relation, detachment load, and detachment contact size. It is found that even relatively small deviations in shape from a cylinder have a significant influence on the detachment load. Eccentricity also affects the adhesive behavior, but to a lesser extent, with oblate shapes requiring larger separation loads than prolate shapes. The load-contact size solution reduces to that for a right-circular, cylindrical rod when the appropriate limit is taken. The detachment behavior of right-circular cylinders is also found to be mimicked by an entire family of rod shapes with different cross sections.  相似文献   

12.
We investigate the occurrence of waterlike thermodynamic and dynamic anomalous behavior in a one dimensional lattice gas model. The system thermodynamics is obtained using the transfer matrix technique and anomalies on density and thermodynamic response functions are found. When the hydrogen bond (molecules separated by holes) is more attractive than the van der Waals interaction (molecules in contact) a transition between two fluid structures is found at null temperature and high pressure. This transition is analogous to a 'critical point' and intimately connects the anomalies in density and in thermodynamic response functions. Monte Carlo simulations were performed in the neighborhood of this transition and used to calculate the self diffusion constant, which increases with density as in liquid water.  相似文献   

13.
In this work, the extended Lennard-Jones potential-based equation of state (ELJ-based EoS) on which the effective near-neighbour pair interactions are LJ (12,6,3) type has been used to predict the specific volume and other thermodynamic properties of some semi-crystalline and liquid polymers and copolymers up to extremely high temperature–high pressure conditions. It seems that, at least in the dense regions, there are no upper- and lower-specific volume limitations in the applicability of the model for different polymeric systems. The parameters can be determined at any temperature for each compound using the temperature dependence of the parameters of ELJ-based EoS. The calculated parameters have been used to calculate the specific volume and other derived thermodynamic properties of different polymeric systems at any temperature and pressure. The ELJ-based EoS has been also compared with some previous studies.  相似文献   

14.
A method was proposed for calculating the thermodynamic properties, freezing point depression, boiling point elevation, vapor pressure and enthalpy of vaporization for single solute electrolyte solutions, including aqueous and nonaqueous solutions, based on a modified three-characteristic-parameter correlation model. When compared with the corresponding literature values, the calculated results show that this method gives a very good approximation, especially for 1-1 electrolytes. Although the method is not very suitable for some solutions with very high ionic strength, it is still a very useful technique when experimental data is scarce.  相似文献   

15.
用密度泛函理论(DFT)B3LYP方法,在6-31G*基组水平下,全优化计算了环五甲撑五硝胺(CRX)的分子几何和优化构型下的电子结构.环C-N键长为0.144~0.148 nm, N-NO2键长为0.139~0.142 nm; CRX的最高占有MO(HOMO)能级和最低未占MO(LUMO)能级之间的差值ΔEg(5.2054 eV)较大,预示CRX较稳定.基于简谐振动分析求得IR谱频率和强度.运用统计热力学方法,求得在200~1200 K的热力学性质C0p,m、 S0m和H0m.还运用Kamlet公式预示了它的爆速和爆压分别为9169 m/s和37.88 GPa.  相似文献   

16.
The properties of an expansion of the statistical sum of a simple liquid with respect to the potential in thermodynamic perturbation theory are analyzed. The coefficients of this expansion are determined by the unperturbed potential, depend on temperature and density, and can be calculated by means of mathematical modeling. It is shown here that the derivatives of these coefficients with respect to temperature and density are expressed through the higher expansion coefficient (these relations are usually called a hierarchy of equations). These coefficients determine the expansion of the Helmholtz free energy and RDF with respect to the perturbation potential. The thermodynamic characteristics of the system (entropy, internal energy, pressure) are expressed through both the differential relations for the Helmholtz free energy and the integral expressions containing RDF. It is found that the hierarchy of equations obtained in this work makes these different methods equivalent. This is important for the application of thermodynamic perturbation theory because it becomes unnecessary to model any other equilibrium properties of the system apart from the expansion coefficients.  相似文献   

17.
Thermodynamic properties of selected small and medium size molecules were calculated using harmonic and anharmonic vibrational frequencies. Harmonic vibrational frequencies were obtained by normal mode analysis, whereas anharmonic ones were calculated using the vibrational self-consistent field (VSCF) method. The calculated and available experimental thermodynamic data for zero point energy, enthalpy, entropy, and heat capacity are compared. It is found that the anharmonicity and coupling of molecular vibrations can play a significant role in predicting accurate thermodynamic quantities. Limitations of the current VSCF method for low frequency modes have been partially removed by following normal mode displacements in internal, rather than Cartesian, coordinates.  相似文献   

18.
采用Gaussian 03程序中的密度泛函理论(DFT)方法,在BHandHLYP/6-311G**水平上对135个多氯10-氧吩噁噻系列化合物(PCPTO)进行了全优化和振动分析计算,得到了各分子在298.15K,1.013×105Pa标准状态下的热力学参数.设计等键反应,计算了PCPTO系列化合物的标准生成热(△fH)和标准生成自由能(△fG),同时研究了这些参数与氯原子的取代位置及取代数目(NPCS)之间的关系.结果表明:熵(S),△fH,△fG与NPCS之间有很强的相关性(R2≥0.991).根据△fG的相对大小,从理论上求得异构体的相对稳定性.以Gaussian 03程序的输出文件为基础,采用统计热力学程序计算了PCPTO化合物在200至1000K的摩尔恒压热容(Cp,m),并用最小二乘法求得Cp,m与温度之间的相关方程,结果发现Cp,m与T,T-1和T-2之间有着很好的相关性(R2=1.000).  相似文献   

19.
刘红艳  易忠胜  莫凌云 《化学学报》2009,67(14):1626-1634
采用Gaussian 03程序中的密度泛函(DFT)方法, 在B3LYP/6-31G*水平上对135个多氯咔唑系列化合物(PCCZs)进行了全优化计算, 得到了298.15 K, 1.013×105 Pa标准状态下各分子的热力学性质. 设计等键反应, 计算了PCCZs系列化合物的标准生成热(ΔfHÖ)和标准生成自由能(ΔfGÖ), 研究了这些参数与氯原子的取代位置及取代数目(NPCS)之间的关系, 结果表明: 熵(SÖ), ΔfHÖ, ΔfGÖ与NPCS之间有很强的相关性. 并根据ΔfGÖ的相对大小, 从理论上求得异构体的相对稳定性的顺序. 此外, 以Gaussian 03程序的输出文件为基础, 采用统计热力学程序计算了PCCZs化合物在200至1800 K的摩尔恒压热容(Cp,m), 并用最小二乘法求得Cp,m与温度之间的相关方程, 发现Cp,m与T, T-1和T-2之间有着很好的相关性.  相似文献   

20.
A local self-consistent Ornstein-Zernike (OZ) integral equation theory (IET) is proposed to provide a rapid route for obtaining thermodynamic and structural information for any thermodynamically stable or metastable state points in the bulk phase diagram without recourse to traditional thermodynamic integration, and extensive NVT-Monte Carlo simulations are performed on a recently proposed honeycomb potential in three dimensions to test the theory's reliability. The simulated quantities include radial distribution function (rdf) and excess internal energy, pressure, excess chemical potential, and excess Helmholtz free energy. It is demonstrated that (i) the theory reproduces the rdf very satisfactorily only if the bulk state does not enter deep into a two phases coexistence region; (ii) the excess internal energy is the only one of the four thermodynamic quantities investigated amenable to the most accurate prediction by the present theory, and the simulated pressure is somewhat overestimated by the theoretical calculations, but the deviation tends to vanish along with rising of the temperature; (iii) using the structural functions from the present local self-consistent OZ IET, a previously derived local expression, due to the present author, achieves even a higher accuracy in calculating for the excess chemical potential than the exact virial pressure formula for the pressure, and the resulting excess Helmholtz free energy is in surprisingly same with the simulation results due to offset of the errors. Based on the above observations, it is suggested that it may be a good procedure to integrate the theoretical excess internal energy along the isochors to get the excess Helmholtz free energy, which is then fitted to a polynomial to be used for calculation of all of other thermodynamic quantities in the framework of the OZ IET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号