首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We study cosmological application of interacting holographic energy density in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameter of the holographic dark energy in a non-flat universe. As system's IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as L=ar(t)L=ar(t). We find that the combination of Brans–Dicke field and holographic dark energy can accommodate wD=−1wD=1 crossing for the equation of state of noninteracting   holographic dark energy. When an interaction between dark energy and dark matter is taken into account, the transition of wDwD to phantom regime can be more easily accounted for than when resort to the Einstein field equations is made.  相似文献   

2.
We study a cosmological implication of holographic dark energy in the Brans–Dicke gravity. We employ the holographic model of dark energy to obtain the equation of state for the holographic energy density in non-flat (closed) universe enclosed by the event horizon measured from the sphere of horizon named L. Our analysis shows that one can obtain the phantom crossing scenario if the model parameter α (of order unity) is tuned accordingly. Moreover, this behavior is achieved by treating the Brans–Dicke scalar field as a Chameleon scalar field and taking a non-minimal coupling of the scalar field with matter. Hence one can generate phantom-like equation of state from a holographic dark energy model in non-flat universe in the Brans–Dicke cosmology framework.  相似文献   

3.
In this paper, the holographic dark-energy model is considered in Brans–Dicke theory, where the holographic dark-energy density ρ Λ =3c 2 M pl2 L −2 is replaced by ρ h=3c 2 Φ(t)L −2. Here is the time-variable Newton constant. With this replacement, it is found that no accelerated expansion for the universe will be achieved when the Hubble horizon is taken to play the role of an IR cut-off. When the event horizon is adopted as the IR cut-off, accelerated expansion for the universe is obtained. In this case, the equation of state of holographic dark energy, w h, takes the modified form . In the limit α→0, the ‘standard’ holographic dark energy is recovered. In the holographic dark-energy dominated epoch, power-law and de Sitter time-space solutions are obtained.  相似文献   

4.
We consider Brans–Dicke theory with a self-interacting potential in Einstein conformal frame. We show that an accelerating expansion is possible in a spatially flat universe for large values of the Brans–Dicke parameter consistent with local gravity experiments.  相似文献   

5.
We study the deeply virtual Compton scattering off a spin-one particle, as the case for the coherent scattering off a deuteron target. We extend our approach, formulated initially for a spinless case, and discuss the role of twist three contributions for restoring the gauge invariance of the amplitude. Using twist three contributions and relations, which emanate from the QCD equations of motion, we derive the gauge invariant amplitude for the deeply virtual Compton scattering (DVCS) off hadrons with spin 1. Using the derived gauge invariant amplitude, the single spin asymmetry is discussed.  相似文献   

6.
7.
In the derivation of holographic dark energy density, the area law of the black hole entropy plays a crucial role. However, the entropy-area relation can be modified from the inclusion of quantum effects, motivated from the loop quantum gravity, string theory and black hole physics. In this paper, we study cosmological implication of the interacting entropy-corrected holographic dark energy model in the framework of Brans–Dicke cosmology. We obtain the equation of state and the deceleration parameters of the entropy-corrected holographic dark energy in a non-flat Universe. As system’s IR cutoff we choose the radius of the event horizon measured on the sphere of the horizon, defined as Lar(t). We find out that when the entropy-corrected holographic dark energy is combined with the Brans–Dicke field, the transition from normal state where w D > −1 to the phantom regime where w D < −1 for the equation of state of interacting dark energy can be more easily achieved for than when resort to the Einstein field equations is made.  相似文献   

8.
We investigate the Brans–Dicke (BD) theory with the potential as cosmological model to explain the present accelerating universe. In this work, we consider the BD field as a perfect fluid with the energy density and pressure in the Jordan frame. Introducing the power-law potential and the interaction with the cold dark matter, we obtain the phantom divide which is confirmed by the native and effective equation of state. Also we can describe the metric f(R) gravity with an appropriate potential, which shows a future crossing of the phantom divide in viable f(R) gravity models when employing the native and effective equations of state.  相似文献   

9.
《Physics letters. A》2001,280(4):191-196
We study the third quantization of a Brans–Dicke toy model, we calculate the number density of the universes created from nothing and found that it has a Planckian form. Also, we calculated the uncertainty relation for this model by means of functional Schrödinger equation and we found that fluctuations of the third-quantized universe field tends to a finite limit in the course of cosmic expansion.  相似文献   

10.
The European Physical Journal C - We study numerical solutions corresponding to spherically symmetric gravitating electroweak monopole and magnetically charged black holes of the...  相似文献   

11.
This Letter is a study of the effects of higher dimensional gravity and Brans–Dicke (BD) scalar field on cosmic acceleration in 5-D BD cosmological model. We assume a flat cosmological model in which the matter content of the universe is either cold dark matter or radiation. In a framework to study attractor solutions in the phase space we simultaneously constrain the model parameters with the observational data for distance modulus. The phase space analysis illustrates that the universe begins from an unstable state in the past and eventually reaches an asymptotically stable state (attractor). We examine the model by performing Hubble parameter test in addition to statefinder diagnosis. We also reconstruct the equation of state parameter, the scale factor in 3-D space and along extra dimension. The results show that due to the presence of extra dimension and Brans–Dicke scalar field in the model, the universe undergoes a period of acceleration.  相似文献   

12.
We follow the approach of induced-matter theory for a five-dimensional (5D) vacuum Brans–Dicke theory and introduce induced-matter and induced potential in four dimensional (4D) hypersurfaces, and then employ a generalized FRW type solution. We confine ourselves to the scalar field and scale factors be functions of the cosmic time. This makes the induced potential, by its definition, vanishes, but the model is capable to expose variety of states for the universe. In general situations, in which the scale factor of the fifth dimension and scalar field are not constants, the 5D equations, for any kind of geometry, admit a power–law relation between the scalar field and scale factor of the fifth dimension. Hence, the procedure exhibits that 5D vacuum FRW-like equations are equivalent, in general, to the corresponding 4D vacuum ones with the same spatial scale factor but a new scalar field and a new coupling constant, [(w)\tilde]{\tilde{\omega}} . We show that the 5D vacuum FRW-like equations, or its equivalent 4D vacuum ones, admit accelerated solutions. For a constant scalar field, the equations reduce to the usual FRW equations with a typical radiation dominated universe. For this situation, we obtain dynamics of scale factors of the ordinary and extra dimensions for any kind of geometry without any priori assumption among them. For non-constant scalar fields and spatially flat geometries, solutions are found to be in the form of power–law and exponential ones. We also employ the weak energy condition for the induced-matter, that gives two constraints with negative or positive pressures. All types of solutions fulfill the weak energy condition in different ranges. The power–law solutions with either negative or positive pressures admit both decelerating and accelerating ones. Some solutions accept a shrinking extra dimension. By considering non-ghost scalar fields and appealing the recent observational measurements, the solutions are more restricted. We illustrate that the accelerating power–law solutions, which satisfy the weak energy condition and have non-ghost scalar fields, are compatible with the recent observations in ranges −4/3 < ω ≤ −1.3151 for the coupling constant and 1.5208 ≤ n < 1.9583 for dependence of the fifth dimension scale factor with the usual scale factor. These ranges also fulfill the condition ${\tilde{\omega} > -3/2}${\tilde{\omega} > -3/2} which prevents ghost scalar fields in the equivalent 4D vacuum Brans–Dicke equations. The results are presented in a few tables and figures.  相似文献   

13.
The Sandage–Loeb (SL) test is a unique method to explore dark energy at the “redshift desert” (2?z?52?z?5), an era not covered by any other dark energy probes, by directly measuring the temporal variation of the redshift of quasar (QSO) Lyman-α absorption lines. In this Letter, we study the prospects for constraining the new agegraphic dark energy (NADE) model and the Ricci dark energy (RDE) model with the SL test. We show that, assuming only a ten-year survey, the SL test can constrain these two models with high significance.  相似文献   

14.
We reveal the non-metric geometry underlying ω→0ω0 Brans–Dicke theory by unifying the metric and scalar field into a single geometric structure. Taking this structure seriously as the geometry to which matter universally couples, we show that the theory is fully consistent with solar system tests. This is in striking contrast with the standard metric coupling, which grossly violates post-Newtonian experimental constraints.  相似文献   

15.
16.
We investigate the compact Kaluza–Klein cosmology in which modified holographic dark energy is interacting with dark matter. Using this scenario, we evaluate equation of state parameter as well as equation of evolution of the modified holographic dark energy. Further, it is shown that the generalized second law of thermodynamics holds without any constraint.  相似文献   

17.
In this work, we study the evolution of primordial black holes within the context of Brans–Dicke theory by considering the presence of a dark energy component with a super-negative equation of state, called phantom energy, as a background. Besides Hawking evaporation, here we consider two types of accretion—radiation accretion and phantom energy accretion. We found that radiation accretion increases the lifetime of primordial black holes whereas phantom accretion decreases the lifespan of primordial black holes. Investigating the competition between the radiation accretion and phantom accretion, we found that there is an instant during the matter-dominated era beyond which phantom accretion dominates radiation accretion. So the primordial black holes which are formed in the later part of radiation-dominated era and in matter-dominated era are evaporated at a quicker rate than by Hawking evaporation. But for presently evaporating primordial black holes, radiation accretion and Hawking evaporation terms are dominant over the phantom accretion term and hence presently evaporating primordial black holes are not much affected by phantom accretion.  相似文献   

18.
19.
This paper is devoted to study Bianchi type I cosmological model in Brans–Dicke theory with self-interacting potential by using perfect, anisotropic and magnetized anisotropic fluids. We assume that the expansion scalar is proportional to the shear scalar and also take a power law ansatz for the scalar field. The physical behavior of the resulting models are discussed through different parameters. We conclude that contrary to the universe model, the anisotropic fluid approaches isotropy at later times in all cases, which is consistent with observational data.  相似文献   

20.
In this work, we have presented a cosmological model in five dimensional spherically symmetric space-time with energy momentum tensors of minimally interacting fields of dark matter and holographic dark energy in Brans–Dicke theory. Under some realistic assumptions in consistent with the present cosmological observations, we have analyzed the field equations to obtain their exact solutions. With particular choices of the constants involved, the values of the overall density parameter and the Hubble’s parameter are obtained to be very close to the latest observational values. We obtain a model universe experiencing super exponential expansion which will be increasingly dark energy dominated in the far future. A comprehensive presentation of the physical as well as kinematical aspects of the parameters, including future singularity, in comparison with the present observational findings is also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号