首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we consider solutions of the Weinstein equation $$\begin{aligned} \Delta u-\frac{k}{x_{n}}\frac{\partial u}{\partial x_{n}}+\frac{\ell }{ x_{n}^{2}}u=0, \end{aligned}$$ on some open subset $\Omega \subset \mathbb R ^{n}\cap \{x_{n}>0\}$ subject to the conditions $4\ell \le (k+1)^{2}$ . If $l=0$ , the operator $x_{n}^{2k/n-2}\left( \Delta u-\frac{k}{x_{n}}\frac{\partial u}{\partial x_{n}}\right) $ is the Laplace–Beltrami operator with respect to the Riemannian metric $ds^{2}=x_{n}^{-2k/n-2}\left( \sum _{i=1}^{n}dx_{i} ^{2}\right) $ . In case $k=n-2$ the Riemannian metric is the hyperbolic distance of Poincaré upper half space. The Weinstein equation is connected to the axially symmetric potentials. The solutions of of the Weinstein equation form a so-called Brelot harmonic space and therefore it is known they satisfy the mean value properties with respect to the harmonic measure. We present the explicit mean value properties which give a formula for a harmonic measure evaluated in the center point of the hyperbolic ball. The key idea is to transform the solutions to the eigenfunctions of the Laplace–Beltrami operator in the Poincaré upper half-space model.  相似文献   

2.
A problem of Carlitz and its generalizations   总被引:1,自引:0,他引:1  
Let ${\mathbb{F}_q}$ be the finite field of characteristic p > 2 with q elements. Carlitz proposed the problem of finding an explicit formula for the number of solutions to the equation $$(x_1+ x_2+\cdots+x_n)^2=a\, x_1x_2\cdots x_n,$$ where ${a\in \mathbb{F}_q^*}$ and n ≥ 3. By using the augmented degree matrix and Gauss sums, we consider the generalizations of the above equation and partially solve Carlitz’s problem. Moreover, the technique developed in this paper may be applied to other equations of the form ${h_1^\lambda=h_2}$ with ${h_1, h_2 \in \mathbb{F}_q[x_1,\ldots,x_n]}$ and ${\lambda \in \mathbb{N}}$ .  相似文献   

3.
In this paper we consider functions \(f\) defined on an open set \(U\) of the Euclidean space \(\mathbb{R }^{n+1}\) and with values in the Clifford Algebra \(\mathbb{R }_n\) . Slice monogenic functions \(f: U \subseteq \mathbb{R }^{n+1} \rightarrow \mathbb{R }_n\) belong to the kernel of the global differential operator with non constant coefficients given by \( \mathcal{G }=|{\underline{x}}|^2\frac{\partial }{\partial x_0} \ + \ {\underline{x}} \ \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}. \) Since the operator \(\mathcal{G }\) is not elliptic and there is a degeneracy in \( {\underline{x}}=0\) , its kernel contains also less smooth functions that have to be interpreted as distributions. We study the distributional solutions of the differential equation \(\mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) and some of its variations. In particular, we focus our attention on the solutions of the differential equation \( ({\underline{x}}\frac{\partial }{\partial x_0} \ - E)F(x_0,{\underline{x}})=G(x_0,{\underline{x}}), \) where \(E= \sum _{j=1}^n x_j\frac{\partial }{\partial x_j}\) is the Euler operator, from which we deduce properties of the solutions of the equation \( \mathcal{G }F(x_0,{\underline{x}})=G(x_0,{\underline{x}})\) .  相似文献   

4.
ДОкАжАНО, ЧтО Дль тОгО, ЧтОБы Дльr РАж ДИФФЕРЕНцИРУЕМОИ НА пРОМЕжУткЕ [А, + ∞) ФУНкцИИf сУЩЕстВОВА л тАкОИ МНОгОЧлЕН (1) $$P(x) = \mathop \Sigma \limits_{\kappa = 0}^{r - 1} a_k x^k ,$$ , ЧтО (2) $$\mathop {\lim }\limits_{x \to + \infty } (f(x) - P(x))^{(k)} = 0,k = 0,1,...,r - 1,$$ , НЕОБхОДИМО И ДОстАтО ЧНО, ЧтОБы схОДИлсь ИН тЕгРАл (3) $$\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{r - 1} }^{ + \infty } {f^{(r)} (t)dt.}$$ ЕслИ ЁтОт ИНтЕгРАл сх ОДИтсь, тО Дль кОЁФФИц ИЕНтОВ МНОгОЧлЕНА (1) ИМЕУт МЕс тО ФОРМУлы $$\begin{gathered} a_{r - m} = \frac{1}{{(r - m)!}}\left( {\mathop \Sigma \limits_{j = 1}^m \frac{{( - 1)^{m - j} f^{(r - j)} (x_0 )}}{{(m - j)!}}} \right.x_0^{m - j} + \hfill \\ + ( - 1)^{m - 1} \left. {\mathop \Sigma \limits_{l = 0}^{m - 1} \frac{{x_0^l }}{{l!}}\int\limits_a^{ + \infty } {dt_1 } \int\limits_{t_1 }^{ + \infty } {dt_2 ...} \int\limits_{t_{m - l - 1} }^{ + \infty } {f^{(r)} (t_{m - 1} )dt_{m - 1} } } \right),m = 1,2,...,r. \hfill \\ \end{gathered}$$ ДОстАтОЧНыМ, НО НЕ НЕОБхОДИМыМ Усл ОВИЕМ схОДИМОстИ кРА тНОгО ИНтЕгРАлА (3) ьВльЕтсь схОДИМОсть ИНтЕгРАл А \(\int\limits_a^{ + \infty } {x^{r - 1} f^{(r)} (x)dx}\)   相似文献   

5.
Let $\mathbb{K }$ be a field of characteristic zero. We describe an algorithm which requires a homogeneous polynomial $F$ of degree three in $\mathbb{K }[x_{0},x_1,x_{2},x_{3}]$ and a zero ${\mathbf{a }}$ of $F$ in $\mathbb{P }^{3}_{\mathbb{K }}$ and ensures a linear Pfaffian representation of $\text{ V}(F)$ with entries in $\mathbb{K }[x_{0},x_{1},x_{2},x_{3}]$ , under mild assumptions on $F$ and ${\mathbf{a }}$ . We use this result to give an explicit construction of (and to prove the existence of) a linear Pfaffian representation of $\text{ V}(F)$ , with entries in $\mathbb{K }^{\prime }[x_{0},x_{1},x_{2},x_{3}]$ , being $\mathbb{K }^{\prime }$ an algebraic extension of $\mathbb{K }$ of degree at most six. An explicit example of such a construction is given.  相似文献   

6.
Let $\alpha $ and $\beta $ be real numbers such that $1$ , $\alpha $ and $\beta $ are linearly independent over $\mathbb {Q}$ . A classical result of Dirichlet asserts that there are infinitely many triples of integers $(x_0,x_1,x_2)$ such that $|x_0+\alpha x_1+\beta x_2| < \max \{|x_1|,|x_2|\}^{-2}$ . In 1976, Schmidt asked what can be said under the restriction that $x_1$ and $x_2$ be positive. Upon denoting by $\gamma \cong 1.618$ the golden ratio, he proved that there are triples $(x_0,x_1,x_2) \in \mathbb {Z}^3$ with $x_1,x_2>0$ for which the product $|x_0 + \alpha x_1 + \beta x_2| \max \{|x_1|,|x_2|\}^\gamma $ is arbitrarily small. Although Schmidt later conjectured that $\gamma $ can be replaced by any number smaller than $2$ , Moshchevitin proved very recently that it cannot be replaced by a number larger than $1.947$ . In this paper, we present a construction of points $(1,\alpha ,\beta )$ showing that the result of Schmidt is in fact optimal. These points also possess strong additional Diophantine properties that are described in the paper.  相似文献   

7.
Let λkbe the k-th Dirichlet eigenvalue of totally characteristic degenerate elliptic operator-ΔB defined on a stretched cone B0 ■ [0,1) × X with boundary on {x1 = 0}. More precisely,ΔB=(x1αx1)2+ α2x2+ + α2xnis also called the cone Laplacian. In this paper,by using Mellin-Fourier transform,we prove thatλk Cnk2 n for any k 1,where Cn=(nn+2)(2π)2(|B0|Bn)-2n,which gives the lower bounds of the Dirchlet eigenvalues of-ΔB. On the other hand,by using the Rayleigh-Ritz inequality,we deduce the upper bounds ofλk,i.e.,λk+1 1 +4n k2/nλ1. Combining the lower and upper bounds of λk,we can easily obtain the lower bound for the first Dirichlet eigenvalue λ1 Cn(1 +4n)-12n2.  相似文献   

8.
Let \(x_{n,k}^{(\alpha ,\beta )}\) , \(k=1,\ldots ,n\) , be the zeros of Jacobi polynomials \(P_{n}^{(\alpha ,\beta )}(x)\) arranged in decreasing order on \((-1,1)\) , where \(\alpha ,\beta >-1\) , and \(\theta _{n,k}^{(\alpha ,\beta )}=\arccos x_{n,k}^{(\alpha ,\beta )}\) . Gautschi, in a series of recent papers, conjectured that the inequalities $$n\theta_{n,k}^{(\alpha,\beta)}<(n+1)\theta_{n+1,k}^{(\alpha,\beta)} $$ and $$(n+(\alpha+\beta+3)/2)\theta_{n+1,k}^{(\alpha,\beta)}<(n+(\alpha+\beta+1)/2)\theta_{n,k}^{(\alpha,\beta)}, $$ hold for all \(n\geq 1\) , \(k=1,\ldots ,n\) , and certain values of the parameters \(\alpha \) and \(\beta \) . We establish these conjectures for large domains of the \((\alpha ,\beta )\) -plane by using a Sturmian approach.  相似文献   

9.
Introduce the notation: $\mathbb{Z}$ is the set of integers, $\bar {\mathbb{Z}}={\mathbb{Z}} \cup \{-\infty, +\infty\},{\mathbb{R}}_+^2 =\{x=(x_1,x_2) \in {\mathbb{R}}^2; x_1>0,x_2>0\}$ , $g_{k,m} (x,\alpha,h)= \int\limits_0^1 {g_1 (\frac{(k+u)h_1 - x_1}{\alpha_1})g_2(\frac{(m+u)h_2 - x_2}{\alpha_2})}du$ , where $g_i :\mathbb{R} \to \mathbb{R},x \in \mathbb{R}^2 ,\alpha ,h \in \mathbb{R}_ + ^2 $ . Under certain conditions on the functions g 1, g 2, we prove that the system of functions $g_{k,m} (x,\alpha^(n), h^(n)) (k,m \in \bar {\mathbb{Z}})$ , where $\alpha ^{\left( n \right)} ,h^{\left( n \right)} \in \mathbb{R}_ + ^2 $ are arbitrary infinitesimal sequences, is complete in the space C $\mathbb{R}^2 $ of uniformly continuous bounded functions f equipped with the norm $||f|| = \mathop {\sup }\limits_{x \in \mathbb{R}^2 } |f(x)|$ . Starting with the functions g k,m , it is possible to construct a method for uniform approximating in $\mathbb{R}^2 $ any continuous function of bounded variation in the sense of Hardy. An error estimate is derived in terms of the second order moduli of continuity. Based on the obtained results, we discuss in detail the accuracy of uniform approximation of functions of several variables by linear functions. The error estimates are derived by using second order moduli of continuity. We pay a particular attention to sharpness of constants. Bibliography: 8 titles.  相似文献   

10.
We examine the validity of the Poincaré inequality for degenerate, second-order, elliptic operators H in divergence form on \({L_2(\mathbf{R}^{n}\times \mathbf{R}^{m})}\) . We assume the coefficients are real symmetric and \({a_1H_\delta\geq H\geq a_2H_\delta}\) for some \({a_1,a_2>0}\) where H δ is a generalized Gru?in operator, $$H_\delta=-\nabla_{x_1}\,|x_1|^{\left(2\delta_1,2\delta_1'\right)} \,\nabla_{x_1}-|x_1|^{\left(2\delta_2,2\delta_2'\right)} \,\nabla_{x_2}^2.$$ Here \({x_1 \in \mathbf{R}^n,\; x_2 \in \mathbf{R}^m,\;\delta_1,\delta_1'\in[0,1\rangle,\;\delta_2,\delta_2'\geq0}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta}}\) if \({|x_1|\leq 1}\) and \({|x_1|^{\left(2\delta,2\delta'\right)}=|x_1|^{2\delta'}}\) if \({|x_1|\geq 1}\) . We prove that the Poincaré inequality, formulated in terms of the geometry corresponding to the control distance of H, is valid if n ≥ 2, or if n = 1 and \({\delta_1\vee\delta_1'\in[0,1/2\rangle}\) but it fails if n = 1 and \({\delta_1\vee\delta_1'\in[1/2,1\rangle}\) . The failure is caused by the leading term. If \({\delta_1\in[1/2, 1\rangle}\) , it is an effect of the local degeneracy \({|x_1|^{2\delta_1}}\) , but if \({\delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , it is an effect of the growth at infinity of \({|x_1|^{2\delta_1'}}\) . If n = 1 and \({\delta_1\in[1/2, 1\rangle}\) , then the semigroup S generated by the Friedrichs’ extension of H is not ergodic. The subspaces \({x_1\geq 0}\) and \({x_1\leq 0}\) are S-invariant, and the Poincaré inequality is valid on each of these subspaces. If, however, \({n=1,\; \delta_1\in[0, 1/2\rangle}\) and \({\delta_1'\in [1/2,1\rangle}\) , then the semigroup S is ergodic, but the Poincaré inequality is only valid locally. Finally, we discuss the implication of these results for the Gaussian and non-Gaussian behaviour of the semigroup S.  相似文献   

11.
When k≥k0=10 Mr2n log (rn) we have for the trigonometric integral $$J_n (k,P) = \int_E {|S(A)|^{2k} dA,} $$ where $$\begin{gathered} S(A) = \sum _{x_1 = 1}^P \cdots \sum _{x_r = 1}^P \exp (2\pi if_A (x_1 , \ldots ,x_r )), \hfill \\ f_A (x_1 , \ldots ,x_r ) = \sum _{t_1 = 0}^n \cdots \sum _{t_r = 0}^n \alpha _{t_1 \cdots l_r } x_1^{t_1 } \cdots x_{r^r }^t \hfill \\ \end{gathered} $$ and E is the M-dimensional unit cube, the asymptotic formula $$J_n (k,P) = \sigma \theta P^{2kr - rnM/2} + O(P^{2kr - rnM/2 - 1/(2M)} ) + O(P^{2kr - rnM/2 - 1/(500r^2 \log (rn))} ),$$ where σ is a singular series and θ is a singular integral.  相似文献   

12.
In this paper, we consider the oscillation of the second-order neutral difference equation $$\Delta ^2 \left( {x_n - px_{n - \tau } } \right) + q_n f\left( {x_{n - \sigma _n } } \right) = 0$$ as well as the oscillatory behavior of the corresponding ordinary difference equation $$\Delta ^2 z_n + q_n f\left( {R\left( {n,\lambda } \right)z_n } \right) = 0$$ .  相似文献   

13.
Let $P_{n}^{ ( \alpha,\beta ) } ( x ) $ be the Jacobi polynomial of degree n with parameters α,β. The main result of the paper states the following: If b≠1,3 and c are non-zero relatively prime natural numbers then $P_{n}^{ ( k+ ( d-3 ) /2,k+ ( d-3 ) /2 ) } ( \sqrt{b/c} ) \neq0$ for all natural numbers d,n and $k\in\mathbb{N}_{0}$ . Moreover, under the above assumption, the polynomial $Q ( x ) = \frac{b}{c} ( x_{1}^{2}+\cdots+x_{d-1}^{2} ) + ( \frac{b}{c}-1 ) x_{d}^{2}$ is not a harmonic divisor, and the Dirichlet problem for the cone {Q(x)<0} has polynomial harmonic solutions for polynomial data functions.  相似文献   

14.
We study the Weinstein equation $$\Delta u - \frac{k}{{x}_{2}} \frac{\partial}{\partial{x}_{2}} + \frac{l}{x^{2}_{2}}u = 0$$ , on the upper half space ${\mathbb{R}^3_{+} = \{ (x_{0}, x_{1}, x_{2}) \in \mathbb{R}^{3} | x_2 > 0\}}$ in case ${4l \leq (k + 1)^{2}}$ . If l =  0 then the operator ${x^{2k}_{2} (\Delta - \frac{k}{x_{2}} \frac{\partial}{\partial{x}_{2}})}$ is the Laplace- Beltrami operator of the Riemannian metric ${ds^2 = x^{-2k}_{2} (\sum^{2}_{i = 0} dx^{2}_{i})}$ . The general case ${\mathbb{R}^{n}_{+}}$ has been studied earlier by the authors, but the results are improved in case ${\mathbb{R}^3_{+}}$ . If k =  1 then the Riemannian metric is the hyperbolic distance of Poincaré upper half-space. The Weinstein equation is connected to the axially symmetric potentials. We compute solutions of the Weinstein equation depending only on the hyperbolic distance and x 2. The solutions of the Weinstein equation form a socalled Brelot harmonic space and therefore it is known that they satisfy the mean value properties with respect to the harmonic measure. However, without using the theory of Brelot harmonic spaces, we present the explicit mean value properties which give a formula for a harmonic measure evaluated in the center point of the hyperbolic ball. Earlier these results were proved only for k =  1 and l =  0 or k =  1 and l =  1. We also compute the fundamental solutions. The main tools are the hyperbolic metric and its invariance properties. In the consecutive papers, these results are applied to find explicit kernels for k-hypermonogenic functions that are higher dimensional generalizations of complex holomorphic functions.  相似文献   

15.
Consider the functional equation ${\Im_1(f ) = \Im_2(f )\,\,(\Im)}$ in a certain general setting. A function g is an approximate solution of ${(\Im)}$ if ${\Im_1(g)}$ and ${\Im_2(g)}$ are close in some sense. The Ulam stability problem asks whether or not there is a true solution of ${(\Im)}$ near g. In this paper, we achieve the general solution and the stability of the following functional equation $$\begin{array}{ll}f\left(\sum\limits^{n}_{i=1}x_{i} \right)+f\left(\sum\limits^{n-1}_{i=1} x_{i}-x_{n} \right)\\\quad=2f\left(\sum\limits^{n-1}_{i=1}x_{i} \right)+\sum\limits^{n-1}_{i=1}(f(x_{i}+x_{n}) +f(x_{i}-x_{n})-2f(x_{i}))\end{array}$$ for all x i (i =? 1,2, . . . , n), in non-Archimedean spaces.  相似文献   

16.
The functional equation $$f(x_{1},y_{1})f(x_{2},y_{2})=f(x_{1}x_{2}+\alpha y_{1}y_{2},x_{1}y_{2}+x_{2}y_{1}),\ (x_{1},y_{1}),\,(x_{2},y_{2})\in \mathbb{ R}^{2}$$ arises from the formula for the product of two numbers in the quadratic field ${\mathbb{Q}(\sqrt{\alpha})}$ . The general solution ${f:\mathbb{R}\rightarrow \mathbb{R}}$ to this equation is determined. Moreover, it is shown that no more general equations arise from a change of basis in the field.  相似文献   

17.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

18.
We study the asymptotic expansion for the Landau constants \(G_n\) , $$\begin{aligned} \pi G_n\sim \ln N + \gamma +4\ln 2 + \sum _{s=1}^\infty \frac{\beta _{2s}}{ N^{2s}},\quad n\rightarrow \infty , \end{aligned}$$ where \(N=n+3/4, \gamma =0.5772\ldots \) is Euler’s constant, and \((-1)^{s+1}\beta _{2s}\) are positive rational numbers, given explicitly in an iterative manner. We show that the error due to truncation is bounded in absolute value by, and of the same sign as, the first neglected term for all nonnegative \(n\) . Consequently, we obtain optimal sharp bounds up to arbitrary orders of the form $$\begin{aligned} \ln N+\gamma +4\ln 2+\sum _{s=1}^{2m}\frac{\beta _{2s}}{N^{2s}}< \pi G_n < \ln N+\gamma +4\ln 2+\sum _{s=1}^{2k-1}\frac{\beta _{2s}}{N^{2s}} \end{aligned}$$ for all \(n=0,1,2,\ldots , m=1,2,\ldots \) , and \(k=1,2,\ldots \) . The results are proved by approximating the coefficients \(\beta _{2s}\) with the Gauss hypergeometric functions involved and by using the second-order difference equation satisfied by \(G_n\) , as well as an integral representation of the constants \(\rho _k=(-1)^{k+1}\beta _{2k}/(2k-1)!\) .  相似文献   

19.
20.
The 155 points of the Grassmannian $G_{1,4,2}$ of lines of PG (4, 2) = $\mathbb{P}V\left( {5,2} \right)$ are those points $x \in {\text{PG}}\left( {{\text{9,2}}} \right) = \mathbb{P}\left( { \wedge {}^2V\left( {5,2} \right)} \right)$ which satisfy a certain quintic equation Q(x) = 0. (The quintic polynomial Q is given explicitly in Shaw and Gordon [3].) A projective flat X $ \subset $ PG (9, 2) will be termed odd or even according as X intersects $G_{1,4,2}$ in an odd or even number of points. Let $Q^\ddag \left( {x_1 ,...,x_5 } \right)$ denote the alternating quinquelinear form obtained by completely polarizing Q. We define the associate Y = X # of a r-flat X $ \subset $ PG (9, 2) by $$Y = \left\{ {y \in {\text{PG}}\left( {n{\text{,2}}} \right)\left| {Q^\ddag \left( {x_1 ,x_{2,} ,x_3 ,x_4 ,y} \right)} \right. = 0,\quad {\text{for}}\;{\text{all}}\,x_1 ,x_{2,} ,x_3 ,x_4 \in X} \right\}.$$ . Because $Q^\ddag$ is quinquelinear, the associate X # of an r-flat X is an s-flat for some s. The cases where r = 4 are of particular interest: if X is an odd 4-flat then X $ \subseteq$ X # while if X is an even 4-flat then X # is necessarily also a 4-flat which is moreover disjoint from X. We give an example of an odd 4-flat X which is self-associate: X # = X. An example of an even 4-flat X such that $\left( {X^\# } \right)^\#$ = X is provided by any 4-flat X which is external to $G_{1,4,2}$ . However, it appears that the two possibilities just illustrated, namely X # = X for an odd 4-flat and $\left( {X^\# } \right)^\#$ = X for an even 4-flat, are the exception rather than the rule. Indeed, we provide examples of odd 4-flats for which X # = PG (9, 2) and of even 4-flats for which ${X^{\# \# \# } }$ = X.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号