首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of pathogenic bacteria that pose a great risk to human health requires a rapid, convenient, reliable, and sensitive detection method. In this study, we developed a selective filtration method using monoclonal antibody (MAb)–magnetic nanoparticle (MNP) nanocomposites for the rapid and sensitive colorimetric detection of Salmonella typhimurium. The method contains two key steps: the immunomagnetic separation of the bacteria using MAb–MNP nanocomposites and the filtration of the nanocomposite-bound bacteria. Color signals from the nanocomposites remaining on the membrane were measured, which reflected the amount of bacteria in test samples. Immunomagnetic capture efficiencies of 8 to 90 % for various concentrations of the pathogen (2?×?104–2?×?101 cells) were obtained. After optimization of the method, 2?×?101 cells of S. typhimurium in pure culture solution was detectable as well as in artificially inoculated vegetables (100 cells/g). The method was confirmed to be highly specific to S. typhimurium without cross-reaction to other pathogenic bacteria and could be concluded within 45 min, yielding results in a shorter or similar time period as compared with recently reported antibody immobilized on magnetic-particle-based methods. This study also demonstrated direct application of MAb–MNP nanocomposites without a dissociation step of bacteria from magnetic beads in colorimetric assays in practice.  相似文献   

2.
We describe a sensitive method for the immunochromatographic determination of aflatoxin B1. It is based on the following steps: 1) Competitive interaction between non-labeled specific primary antibodies and target antigens in a sample and in the test zone of a membrane; 2) detection of the immune complexes on the membrane by using a secondary antibodies labeled with gold nanoparticles. The method enables precise adjustment of the required quantities of specific antibodies and the colloidal (gold) marker. It was applied in a lateral flow format to the detection of aflatoxin B1 and exhibits a limit of detection (LOD) of 160 pg?·?mL?1 if detected visually, and of 30 pg?·?mL?1 via instrumental detection. This is significantly lower than the LOD of 2 ng?·?mL?1 achieved by conventional lateral flow analysis using the same reagents. Figure
Immunochromatography with secondary labeled antibodies caused 10-fold decrease of detection limit  相似文献   

3.
In this work, a simple method for electroanalytical determination of 17α-ethinylestradiol (EE2) hormone in natural waters was developed using a boron-doped diamond electrode (BDD). The analyses were performed using square wave voltammetry and the parameters were optimized. The results showed a well-defined irreversible oxidation peak (BR buffer 0.1 mol L?1, pH 8.0) at +0.65 V (vs. Ag/AgCl). The voltammetric results showed also that the oxidation process is controlled by adsorption of species and indicated that there are two electrons involved. The obtained analytical curves for 17α-ethinylestradiol presented good linearity in the concentration range 9.9?×?10?7 to 5.2?×?10?6 mol L?1 in utlrapure water and 7.9?×?10?7 to 5.2?×?10?6 mol L?1 in natural water samples (supply dam). Detection limits (DL) obtained were between 2.4?×?10?7 and 7.5?×?10?7 mol L?1 and quantification limits (QL) between 7.9?×?10?7 and 2.5?×?10?6 mol L?1. The recovery experiments showed values between 86 and 114 % for spiked samples thus indicating the applicability of the electroanalytical methodology to quantify 17α-ethinylestradiol directly in natural water of supply Dam (Billings Dam in Diadema-SP. Brazil), without any preconcentration or derivatization.  相似文献   

4.
A novel poly(methylene blue)/graphene composite glassy carbon electrode was fabricated and the electrochemical behavior of maltol at the modified electrode was studied by cyclic voltammetry. In phosphate-buffered solution, the modified electrode exhibited excellent electrocatalytic activity towards the electrochemical oxidation of maltol. Under optimized conditions, the oxidation peak current showed a linear relationship with the concentrations of maltol in the ranges of 8.00?×?10?7 to 4.00?×?10?5 and 4.00?×?10?5 to 5.40?×?10?4 mol L?1, with a detection limit of 6.50?×?10?8 mol L?1. The performance of the developed method was validated in terms of linearity (r?=?0.9981 and 0.9955), recovery (97.0?99.3 %), reproducibility (relative standard deviations?≤?3.1 %, n?=?6), and robustness. The method shows excellent sensitivity, selectivity, and reproducibility and has been successfully applied to analyzing maltol in a wide variety of food products.  相似文献   

5.
《Analytical letters》2012,45(12):2317-2328
Abstract

Rapid, simple, and accurate spectrophotometric method is presented for the determination of ibuprofen by batch and flow injection analysis methods. The method is based on ibuprofen competitive complexation reaction with phenolphthalein‐β‐cyclodextrin (PHP‐β‐CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of ibuprofen was measured. Ibuprofen can be determined in the range 8.0×10?6 ?3.2×10?4 and 2.0×10?5?5.0×10?3 mol l?1 by batch and flow methods, respectively. The limit of detection and limit of quantification were 6.19×10?6 and 2.06×10?5 mol l?1 for batch and 1.77×10?5 and 5.92×10?5 mol l?1 for flow method, respectively. The sampling rate in flow injection analysis method was 120±5 samples h?1. The method was applied to the determination of pharmaceutical formulations.  相似文献   

6.
We describe the synthesis of ß-cyclodextrin modified magnetic nanoparticles (CD-mNPs) as a material for solid-phase extraction of the cancer biomarker 5-hydroxy-indole-3-acetic acid (5-HIAA) from urine. The CD-mNPs were characterized by TEM, FTIR, and XRD, and the kinetics and adsorption isotherms were studied. The strong interaction between the CD-mNPs and 5-HIAA is the main driving force for recognition and extraction, while the magnetic core of the NPs allows their separation from the sample matrix. Recovery of 5-HIAA from the adsorbent using an adequate solvent regenerated the adsorbent for further use. 5-HIAA was then quantified by fluorometry of its complex with ß-CD. The method works in the 1?×?10?7 to 1?×?10?5 mol L?1 (R2 0.9982–0.9996) concentration range, and the limits of detection (3σ) and quantification (10 σ) of the method are 1.2?×?10?8 mol L?1 and 4.01?×?10?8 mol L?1 5-HIAA, respectively. The recovery of 5-HIAA from urine samples spiked with 5-HIAA in three concentrations (1.4?×?10?6, 4.50?×?10?6 and 1.0?×?10?5 mol L?1) are within 63?±?3 %.
Figure
Cyclodextrin functional magnetic nanoparticles as sorbents for separation of 5-hydroxy-3-indole acetic acid and its fluorescence determination after released with methanol.  相似文献   

7.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

8.
《Analytical letters》2012,45(4):626-636
A new chemiluminescence system of Tb3+/K2S2O8 was developed for the determination of albumin. Some experimental conditions were examined and optimized. The linear ranges of the calibration curves are 5.0 × 10?9–5.0 × 10?6 mol/L for bovine serum albumin, 5.0 × 10?8–1.0 × 10?5 mol/L for human serum albumin and 2.5 × 10?7–1.0 × 10?5 mol/L for ovalbumin, and the corresponding detection limits are 1.9 × 10?9 mol/L, 1.5 × 10?8 mol/L, and 1.5 × 10?7 mol/L, respectively. The method was applied to the determination of albumin in human serum samples, and the results were in agreement with those obtained by the bromcresol green method. The relative errors for the analytical results were from ?2.0% to 4.3%.  相似文献   

9.
Rapid methods for the quantification of Escherichia coli are required for the monitoring of faecal contamination in water to secure public health. The immunomagnetic separation (IMS) offers rapid enrichment and purification of bacteria in complex matrices and is compatible with immunoassays. By means of this technique, non-target cells and matrix components which might interfere with subsequent analytical methods are removed. We present the synthesis of magnetic nanoparticles (MNPs) and covalent coupling to antibodies against the enterobacterial common antigen (ECA) for use with IMS. Quantification was carried out with a chemiluminescence-based sandwich enzyme-linked immunosorbent assay (ELISA). Our anti-ECA-MNPs allow for a group-specific enrichment of bacterial cells, which can be combined with a species-specific analytical method. The particles were used along with commercially available magnetic columns for the selective enrichment of E. coli from 10-mL water samples. The volumetric enrichment factor was 9. For enriched samples, the limit of detection was reduced from 5.0?×?106 cells·mL-1 to 2.6?×?105 cells·mL-1. Using 200 µL anti-ECA-MNPs, we determined a recovery of 97?±?6% for a sample containing 106 cells·mL-1 and 89?±?2% for a sample containing 107 cells·mL-1. The overall time for cell enrichment and detection was 3 h 45 min.  相似文献   

10.
The direct electron transfer of glucose oxidase (GOx) was achieved based on the immobilization of CdSe@CdS quantum dots on glassy carbon electrode by multi-wall carbon nanotubes (MWNTs)-chitosan (Chit) film. The immobilized GOx displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ’) of ?0.459 V (versus Ag/AgCl) in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) of GOx confined in MWNTs-Chit/CdSe@CdS membrane were evaluated as 1.56 s?1 according to Laviron's equation. The surface concentration (Γ*) of the electroactive GOx in the MWNTs-Chit film was estimated to be (6.52?±?0.01)?×?10?11?mol?cm?2. Meanwhile, the catalytic ability of GOx toward the oxidation of glucose was studied. Its apparent Michaelis–Menten constant for glucose was 0.46?±?0.01 mM, showing a good affinity. The linear range for glucose determination was from 1.6?×?10?4 to 5.6?×?10?3?M with a relatively high sensitivity of 31.13?±?0.02 μA?mM?1?cm?2 and a detection limit of 2.5?×?10?5?M (S/N=3).  相似文献   

11.
An electrochemical biosensor was fabricated by covalent modification of 5-hydroxytryptophan (5-HTP) on the surface of glassy carbon electrode (GCE). The electrode, denoted as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry. For comparison, tryptophan modified GCE (TRP/GCE) and serotonin modified GCE (5-HT/GCE) were prepared by the same method. It was found that electrocatalytic ability of these electrodes was in the order of 5-HTP/GCE?>?TRP/GCE?>?5-HT/GCE for the oxidation of dopamine (DA) and 5-HT. The sensor was effective to simultaneously determine DA and 5-HT in a mixture. It can resolve the overlapping anodic peaks into two well-defined voltammetric peaks at 0.24 and 0.39 V (versus SCE). The linear response is in the range of 5.0?×?10?7–3.5?×?10?5 mol L?1 with a detection limit of 3.1?×?10?7 mol L?1 for DA, and in the range of 5.0?×?10?6–3.5?×?10?5 mol L?1 with a detection limit of 1.7?×?10?6 mol L?1 for 5-HT (s/n?=?3), respectively.  相似文献   

12.
Raloxifene is an important estrogen receptor modulator with many side effects, and determination of this drug is very important in biological samples. The present research describes a ZnO decorated graphene nanosheet (ZnO/GrNS)/ionic liquid based electrochemical sensor for the measurement of raloxifene. The ZnO/GrNS were synthesized via direct chemical precipitation process and characterized using the SEM-EDAX technique. Due to excellent conductivity of ZnO/GrNS and ionic liquid, the suggested electrochemical sensor exhibited improved electrochemical response for raloxifene. After optimization of electrochemical conditions and at the best state, the fabricated electrode displayed two linear dynamic ranges (1.0?×?10?10–5.0?×?10?6 and 1.0?×?10?6–5.0?×?10?4 M) with a detection limit (DL) of 0.07 nM. Quantification analysis of raloxifene was successfully evaluated using the suggested sensor in pharmaceutical samples.  相似文献   

13.
《Analytical letters》2012,45(15):2430-2443
Abstract

A highly sensitive method to determine of indium is proposed by adsorption stripping differential pulse cathodic voltammetry (AdSDPCV) method. The complex of indium ions with xylenol orange is analyzed based on the adsorption collection onto a hanging mercury drop electrode (HMDE). After accumulation of the complex at ?0.20 V vs. Ag/AgCl reference electrode, the potential is scanned in a negative direction from ?0.40 to ?0.75 V with the differential pulse method. Then, the reduction peak current of In(III)–XO complex is measured. The influence of chemical and instrumental variables was studied by factorial design analysis. Under optimum conditions and accumulation time of 60 s, linear dynamic range was 0.1–10 ng/ml (8.7 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.03 ng/ml (2.6 × 10?10 M); at accumulation time of 5 min, linear dynamic range was 0.04–10 ng/ml (3.4 × 10?10 to 8.7 × 10?8 M) with a limit of detection of 0.013 ng/ml (1.1 × 10?10 M). The applicability of the method to analysis of real samples was assessed by the determination of indium in water, alloy, and jarosite (zinc ore) samples.  相似文献   

14.
A new electrode was developed by one-step potentiostatic electrodeposition (at ?2.0 V for 20 s) of Au/SiO2 nanoparticles on a glassy carbon electrode. The resulting electrode (nano-Au/SiO2/GCE) was characterized by scanning electronic microscopy, X-ray photoelectron spectroscopy and electrochemical techniques. The electrochemical behavior of dihydronicotinamide adenine dinucleotide (NADH) at the nano-Au/SiO2/GCE were thoroughly investigated. Compared to the unmodified electrode, the overpotential decreased by about 300 mV, and the current response significantly increased. These changes indicated that the modified electrode showed excellent catalytic activity in the oxidation of NADH. A linear relationship was obtained in the NADH concentration range from 1.0?×?10?6 to 1.0?×?10?4 mol?L?1. In addition, amperometric sensing of ethanol at the nano-Au/SiO2/GCE in combination with alcohol dehydrogenase and nicotinamide adenine dinucleotide was successfully demonstrated. A wide linear response was also found for ethanol in the range from 5.0?×?10?5 to 1.0?×?10?3 mol?L?1 and 1.0?×?10?3 to 1.0?×?10?2 mol?L?1, respectively. The method was successfully applied to determine ethanol in beer and biological samples.  相似文献   

15.
A fast and convenient analytical method is presented for the determination of catechin. The electrochemical response of catechin in pH 6.8 phosphate buffer solution is significantly enhanced by immobilization of a film of poly-aspartic acid on the surface of the glassy carbon electrode. The enhancement mechanism and effect factors such as pH value, accumulation time and scan rate, were explored. Under optimum conditions, the differential pulse voltammetry peak current of catechin is proportional to the concentration in the range from 2.5?×?10?7 to 3.0?×?10?5 molL?1, with the detection limit of 7.2?×?10?8 molL?1. This method was also applied to the determination of catechin in tea beverage samples, and the recoveries were from 97.1% to 102.7%.  相似文献   

16.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

17.
Two simple and sensitive spectrophotometric methods have been developed for analysis of the antipsychotic drug olanzapine in pharmaceuticals. Method A is based on liberation of iodine by reaction between the drug and potassium iodate, followed by reaction with leuco crystal violet (LCV), the color of oxidized LCV being measured at 598 nm. Method B is based on oxidation of olanzapine with chloramine-T (CAT) in acidic medium, the unconsumed CAT being determined with rhodamine B, measuring the absorbance at 550 nm. Calibration graphs were linear over the ranges of 0.05–2.0 and 0.1–1.6 μg mL?1 olanzapine for method A and B, respectively. The molar absorptivity, Sandell’s sensitivity, detection limit, and quantitation limit were found to be 1.59 × 105, 0.00132, 0.038, and 0.117, respectively, for method A and 0.953 × 105, 0.00221, 0.064, and 0.192, respectively, for method B. The optimum conditions and other analytical parameters were evaluated. The proposed methods have been applied successfully for analysis of olanzapine in pure form and its dosage forms, and no interference was observed from common excipients present in pharmaceutical formulations.  相似文献   

18.
《Analytical letters》2012,45(5):973-983
Abstract

A rapid and sensitive flow‐injection chemiluminescence (FI‐CL) method, which is based on the CL intensity that generated from the redox reaction of Ce(IV)‐rhodamine B in H2SO4 medium, for the determination of acyclovir and gancyclovir is described. For acyclovir, the determination range is 3×10?8 g mL?1–7×10?5 g mL?1, with 1.56×10?8 g mL?1 as its determination limit. During 11 repeated measurements for 1×10?6 g mL?1 acyclovir, the relative standard deviation was 2.08%. For gancyclovir, the determination range was 5×10?8 g mL?1–7×10?5 g mL?1, with 2.35×10?8 g mL?1 as its determination limit. The relative standard deviation is 2.83% with 11 repeated measurements of 1×10?6 g mL?1 gancyclovir. This method can be successfully used to determine the content of acyclovir and gancyclovir in injections, acyclovir in eye drops, and, maybe, also for other ciclovirs.  相似文献   

19.
The electrooxidation of dextromethorphan on a composite constructed with carbon nanotube–ionic liquid–carbon microparticles was investigated by cyclic voltammetry in a 100 mM phosphate buffer solution, pH 7.40. In the voltammograms, an irreversible diffusion-controlled anodic peak appeared. The diffusion coefficient of dextromethorphan, the electron-transfer coefficient, and the standard rate constant of the electrooxidation process were found to be 3.45?×?10?6 cm2 s?1, 0.65, and 1.67?×?10?3 cm s?1, respectively. A sensitive and timesaving determination procedure was developed for the analysis of dextromethorphan, and the corresponding analytical parameters were reported. Using this method, dextromethorphan was determined with an LOD and LOQ of 8.81 and 29.36 μM in a linear range of 2.5?×?10?4 to 3.3?×?10?3 M, respectively. The proposed amperometric method was successfully applied to the analysis of commercial pharmaceutical products (syrup and oral drop), and the results were in good agreement with the declared values.  相似文献   

20.
LaFeO3 nanoparticles of approximately 22 nm in size were synthesized and characterized by XRD and TEM. A novel glassy carbon electrode modified with LaFeO3 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The modified electrode exhibited strong promoting effect and high stability toward the electrochemical oxidation of dopamine (DA), which gave reversible redox peaks with a formal potential of 0.145 V (vs. Ag/AgCl) in pH 7.0 phosphate buffer solution. The anodic peak current (measured by constant potential amperometry) increased linearly with the concentration of dopamine in the range from 1.5?×?10?7 to 8.0?×?10?4 M. The detection limit was 3.0?×?10?8 M. The relative standard deviation of eight successive scans was 3.47% for 1.0?×?10?6 M DA. The interference by ascorbic acid was eliminated efficiently. The method was used to determine DA in dopamine hydrochloride injections and showed excellent sensitivity and recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号