首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

2.
MnCo2O4 spinel nanoparticles (NPs) have been prepared using Aloe vera gel solution. The characterization of prepared spinel was performed applying Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, transmission electron spectroscope, scanning electron microscope and dynamic light scattering. The results manifested that the prepared nanoparticles were mainly spherical plus minor agglomeration with average size distribution between 35 and 60 nm. The catalytic activity of the prepared nanoparticles upon thermal degradation of ammonium perchlorate (AP) was evaluated applying differential scanning calorimetry and thermogravimetry instruments. MnCo2O4 nanoparticles increased the released heat of AP from 450 to 1480 J g?1 and decreased the decomposition temperature from 420 to 293 °C. The kinetic parameters obtained from Kissinger methods showed that the activation energy of AP thermal decomposition in the presence of MnCo2O4 NPs considerably decreased. Also, a mechanism has been proposed in the presence of catalyst for the process of thermal decomposition of AP.  相似文献   

3.
4.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

5.
Nickel zinc ferrite (Ni0.4Zn0.6Fe2O4) films on Si (100) substrate were synthesized using a spin-coating method. The crystallinity of the Ni0.4Zn0.6Fe2O4 films with the thickness of about 386 nm became better as the annealing temperature increased. The films have smooth surface, relatively good packing density and uniform thickness. The volatilization of Zn is serious at 900 °C. With the increase of annealing temperature, the saturation magnetization M s increases in the temperature ranging from 400 to 700 °C, however, decreases above 700 °C, and the coercivity H c increases in the temperature range 400–800 °C, decreases above 800 °C. After annealed at 700 °C for 2 h in air with the heating rate 2 °C/min, the film shows a maximum saturation magnetization M s of 349 emu/cc and low coercivity H c of 66 Oe. The M s is higher than others which prepared by this method, however, the H c is lower. The M s of Ni0.4Zn0.6Fe2O4 films annealed at 700 °C increases with increasing annealing time and the H c changes slightly.  相似文献   

6.
A sol–gel auto-combustion method was investigated to incorporate small amounts of additives of Cu and Bi uniformly into soft magnetic MnZn-ferrite nanoparticles, which were prepared by Fe(NO3)3·9H2O, Mn(NO3)2 and Zn(NO3)2·6H2O dissolved in water and citric acid. The powder was characterized by the X-ray diffraction analysis and transmission electron microscope method. The effects of nano-particle sized powders in microstructure development and adding CuO–Bi2O3 into MnZn-ferrite on phase formation, densification process as well as magnetic properties were studied by scanning electron microscope and vibrating sample magnetometer techniques. The sample without additive can be sintered well at 930 °C, while the samples with a small amount of the additive can be sintered at less than 900 °C. Obviously, the micron-sized powders exhibited high sintering activity. It was also found that CuO–Bi2O3 additive promoted the growth of grains and improved magnetic properties. The permeability and the saturation magnetization were improved substantially by adding CuO–Bi2O3 into MnZn-ferrite and the sintering temperature was lowered to 875 °C, which may be associated with the redistribution of cations on the tetrahedral (A) sites and octahedral (B) sites within the spinel lattice.  相似文献   

7.
SrBi4Ti4O15 (SBTi), SrBi3.89La0.1Ti3.97V0.03O15 (SBLTV) thin films have been fabricated on Pt/Ti/SiO2/Si by the sol–gel method. Well-saturated hysteresis loops with remnant polarization around 46.7 μC/cm2 are obtained on Pt/SBLTV/Pt capacitors. The capacitor shows excellent fatigue resistance with no polarization reduction up to 109 switching cycles even at low test frequency of 50 kHz. The improvement of ferroelectric and fatigue-endurance properties are attributed to the La3+ and V5+ co-substitution, which brings about the concentration decrease and the mobility weakening of the defects.  相似文献   

8.
In this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.   相似文献   

9.
The CuO-CeO2/Al2O3 catalysts for the selective oxidation of CO in hydrogen-containing mixtures were prepared by surface self-propagating thermal synthesis (SSTS) with the use of cerium nitrate Ce(NO3)3, the ammonia complex of copper acetate [Cu(NH3)4](CH3COO)2, and citric acid C6H8O7 as a fuel additive. The effect of the C6H8O7/Ce(NO3)3 molar ratio on the catalyst activity and selectivity for oxygen was studied. The catalyst samples were studied by X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR-H2), IR spectroscopy of adsorbed CO, and transmission electron microscopy (TEM). It was found that an increase in the C6H8O7/Ce(NO3)3 ratio resulted in an increase in the degree of dispersion of the resulting CeO2 phase. The greatest amount of dispersed CuO particles, which are responsible for catalytic activity in the oxidation of CO, was formed at C6H8O7/Ce(NO3)3 = 1.  相似文献   

10.
Novel visible-light-activated In2O3–CaIn2O4 photocatalysts were developed in this paper through a sol–gel method. The photocatalytic activities of In2O3–CaIn2O4 composite photocatalysts were investigated based on the decomposition of methyl orange under visible light irradiation (λ > 400 nm). The obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and UV–vis diffused reflectance spectroscopy (DRS). The results revealed that the In2O3–CaIn2O4 composite samples with different In2O3 and CaIn2O4 content can be obtained by controlling the synthesis temperature, and the composite photocatalysts extended the light absorption spectrum toward the visible region. The photocatalytic tests indicated that the composite samples demonstrated high visible-light activity for decomposition of methyl orange. The significant enhancement in the In2O3–CaIn2O4 photo-activity under visible light irradiation can be ascribed to the efficient separation of photo-generated carriers in the In2O3 and CaIn2O4 coupling semiconductors.  相似文献   

11.
Spinel LiMn2−x Ni x O4 compounds doped with a range of Ni (x=0–0.06) were synthesized by a spray-drying method. The structure and morphology characteristics of the powders were studied in detail by means of X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy. The XRD data reveal that all the samples have well-defined spinel structure, but, with the increase in Ni content, the doped lithium manganese spinels have smaller lattice constant. The undoped and doped spinel LiMn2O4 particles are fine, narrowly distributed, and well crystallized. The electrochemical characteristics of the samples are measured in the coin-type cells in a potential range of 3.2–4.35 V vs Li/Li+. All cyclic voltammogram curves exhibit two pairs of redox reaction peaks, but, among them, there are some differences about the peak split. With the increase in the Ni content, the specific capacities of the samples decrease slightly, but their cyclic ability increases.  相似文献   

12.
Magnesium and zinc ferrites have been prepared by the polymeric precursor method. The organic material decomposition was studied by thermogravimetry (TG) and differential thermal analysis (DTA). The variation of crystalline phases and particle morphology with calcination temperature were investigated using X-ray diffraction (XRD) and scanning electronic microscopy (SEM), respectively. The colors of the ferrites were evaluated using colorimetry. Magnesium ferrite crystallizes above 800°C, presenting a yellow- orange color with a reflectance peak at the 600–650 nm range, while zinc ferrite crystallizes at 600°C, with a reflectance peak between 650–700 nm, corresponding to the red-brick color.  相似文献   

13.
A series of MoO3 doped Fe2O3 catalysts prepared by the co-precipitation method were investigated in the selective catalytic reduction of NO by NH3 (NH3-SCR). The catalysts displayed excellent catalytic activity from 225 to 400°C and high tolerance to SO2/H2O poisoning at 300°C. To characterize the catalysts the N2-BET, XRD, Raman, NO-TPD, NH3-TPD and in situ DRIFTS were carried out. It was found that the main reason explaining a high NH3-SCR performance might be the synergistic effect between Fe and Mo species in the catalyst that could enhance the dispersion of Fe2O3 and increase NH3 adsorption on the catalyst surface.  相似文献   

14.
Among the various positive electrode materials investigated for Li-ion batteries, spinel LiMn2O4 is one of the most important materials. Small particles of the active materials facilitate high-rate capability due to large surface to mass ratio and small diffusion path length. The present work involves the synthesis of submicron size particles of LiMn2O4 in a quaternary microemulsion medium. The precursor obtained from the reaction is heated at different temperatures in the range from 400 to 900 °C. The samples heated at 800 and 900 °C are found to possess pure spinel phase with particle size <200 nm, as evidenced from XRD, SEM, and TEM studies. The electrochemical characterization studies provide discharge capacity values of about 100 mAh g−1 at C/5 rate, and there is a moderate decrease in capacity by increasing the rate of charge–discharge cycling. Studies also include charge–discharge cycling and ac impedance studies in temperature range from −10 to 40 °C. Impedance data are analyzed with the help of an equivalent circuit and a nonlinear least squares fitting program. From temperature dependence of charge-transfer resistance, a value of 0.62 eV is obtained for the activation energy of Mn3+/Mn4+ redox process, which accompanies the intercalation/deintercalation of the Li+ ion in LiMn2O4.  相似文献   

15.
We proposed here a new process coupling dielectric barrier discharge (DBD) plasma with magnetic photocatalytic material nanoparticles for improving yield in DBD degradation of methyl orange (MO). TiO2 doped Fe3O4 (TiO2/Fe3O4) was prepared by the sol-gel method and used as a new type of magnetic photocatalyst in DBD system. It was found that the introduction of TiO2/Fe3O4 in DBD system could effectively make use of the energy generated in DBD process and improve hydroxyl radical contributed by the main surface Fenton reaction, photocatalytic reaction and catalytic decomposition of dissolved ozone. Most part of MO (88%) was degraded during 30 min at peak voltage of 13 kV and TiO2/Fe3O4 load of 100 mg/L, with a rate constant of 0.0731 min?1 and a degradation yield of 7.23 g/(kW h). The coupled system showed higher degradation efficiency for MO removal.  相似文献   

16.
This work presents the preparation and characterization of magnesium ferrite which is one of the important magnetic oxides with spinel structure. Magnesium ferrite was prepared via microemulsion method mediated hydrolytic decomposition of mixed alkoxide solutions. This microemulsion was using for preparation magnesium ferrit for the first time. The starting solution, composed from magnesium methoxide and iron ethoxide in dry ethanol, was introduced in to the prepared microemulsion and sequentially hydrolyzed by distilled water addition (Pithan et al. in J Cryst Growth 280:191–200, 2005; Shiratori et al. in J Eur Ceram Soc 25:2075–2079, 2005; Herrig and Hempelmann in Mater Lett 27:287–292, 1996). After raw powder precipitation, the samples were decantanted by ethanol and then calcined at temperatures 800, 900, 1,000 or 1,100 °C for 1 h. The resulting samples were characterized using powder X-ray diffraction, high resolution transmission electron microscopy, Mössbauer spectroscopy and magnetic measurements. X-ray diffraction and Mössbauer spectroscopy confirmed the presence of the spinel phase. The particles size was calculated from the XRD line broadening using Scherrer equation and their size was found about 31–38 nm, with only slight dependence on the heat treatment temperature. TEM revealed the particles size of about 39 nm. Magnetic measurements showed a ferrimagnetic behavior for all samples.  相似文献   

17.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

18.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

19.
Various amounts and different types of heteropolyacids promoted 5Ag15Cu/Al2O3 catalysts were prepared by impregnation method and analyzed through many techniques. The synthesized catalysts were evaluated for hydrogenolysis of glycerol to propanediols. The results demonstrated that heteropolyacids loading facilitated the reduction, promoted the dispersion, enhanced the acidity, and increased Broensted acid sites of the AgCu catalysts, which benefited the generation of 1,3-propanediol. Compared with phosphotungstic acid and phosphomolybdic acid, silicotungstic acid promoted AgCu catalyst had a better performance for 1,3-propanediol due to the better Cu dispersion and higher Broensted acidity. In addition, when the reaction was performed at 220 °C under 3.5 MPa for 8 h, the chosen 5Ag15Cu-10HSiW/Al2O3 achieved a 69.6% glycerol conversion with 35.6% 1,2-propanediol selectivity and 21.5% 1,3-propanediol selectivity.  相似文献   

20.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号