首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An Ag(I)-N-heterocylic carbene (NHC) complex, [Ag(L)2]PF6 (L = 1-(2′-methylbenzyl)-3-(2″-propyl)benzimidazolium), was used as a transfer agent for the synthesis of a Pd(II)–NHC complex, formulated as [PdCl(L)2(MeCN)]PF6 (Pd1). The complex Pd1 was characterized by 1H and 13C NMR, FTIR spectroscopy and elemental analysis. Single crystal X-ray diffraction analysis reveals that the Pd(II) atom has a square planar geometry. This complex was screened for its antibacterial potential against the Gram-negative bacteria Escherichia coli (ATCC 25922) and the Gram-positive bacteria Staphylococcus aureus (ATCC 12600). These results are compared with those obtained for a standard antibiotic, ampicillin, and also the corresponding Ag(I)–NHC complex.  相似文献   

2.
In this study, a series of unsymmetrically 2-morpholinoethyl-substituted benzimidazolium salts and their Ag(I)NHC complexes were synthesized. The 1,3-dialkylbenzimidazolium salts (1ad) were synthesized in dimethylformamide at 80 °C temperature from the N-(2-morpholinoethyl)benzimidazole and alkyl halides. The Ag(I)NHC complexes (2ad) were synthesized in dichloromethane at room temperature from the benzimidazolium salts and Ag2O. All compounds were characterized by spectroscopic techniques (NMR and FT-IR) and elemental analyses. Also, the salt 1c and complex 2c were characterized by single-crystal X-ray crystallography. Anticancer activities of 2-morpholinoethyl-substituted benzimidazolium salts and Ag(I)NHC complexes were investigated against the MCF-7 breast cancer cell line, and the IC30 and IC50 values of these compounds were found to be in the range of 241–490 and 6–14 µM, respectively.  相似文献   

3.
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Py-Im)(POP)](PF6) (P1), [Cu(Py-BenIm)(POP)](PF6) (P2), and [Cu(Py-c-BenIm)(POP)](PF6) (P3) (Py-Im = 3-methyl-1-(pyridin-2-yl)-1H-imidazolylidene, Py-BenIm = 3-methyl-1-(pyridin-2-yl)-1H-benzo[d]imidazolylidene, Py-c-BenIm = 3-methyl-1-(pyridin-2-ylmethyl)-1H-benzo[d]imidazolylidene, POP = bis([2-diphenylphosphino]-phenyl)ether), have been synthesized without transmetalation of the NHC–Ag(I) complex for the first time. The photophysical properties of the resultant NHC–Cu(I) complexes have been systematically investigated via spectroscopic methods. All complexes exhibit good photoluminescence properties with long excited-state lifetimes and moderate quantum yields. Density functional theory and time dependent density functional theory calculations were employed to rationalize the photophysical properties of the NHC–Cu(I) complexes.  相似文献   

4.
DPPH (2,2-diphenyl-1-picrylhydrazil), a free radical-containing organic compound, is used widely to evaluate the antioxidant properties of plant constituents. Here, we report an efficient electroactive DPPH molecular system with excellent electrocatalytic sensor properties, which is clearly distinct from the traditional free radical-based quenching mechanism. This unusual molecular status was achieved by the electrochemical immobilization of graphene oxide (GO)-stabilized DPPH on a glassy carbon electrode (GCE). Potential cycling of the DPPH adsorbed-GCE/GO between ??1 and 1 V (Ag/AgCl) in a pH 7 solution revealed a stable and well-defined pair of redox peaks with a standard electrode potential, E0′?=?0?±?0.01 V (Ag/AgCl). Several electrochemical characterization studies as well as surface analysis of the GCE/GO@DPPH-modified electrode by transmission electron microscopy, Raman, and infrared spectroscopy collectively identified the imine/amine groups as the redox centers of the electroactive DPPH on GO. The use of different carbon-supports showed that only oxygen-functionalized GO and MWCNTs could provide major electroactivity for DPPH. This highlights the importance of a strong hydrogen-bonded network structure assisted by the concomitant π-π interactions between the organic moiety and oxygen function groups of carbon for the high electroactivity and stability of the GCE/GO@DPPH-NH/NH2-modified electrode. The developed electrode exhibited remarkable performance towards the electrocatalytic oxidation of NADH at 0 V (Ag/AgCl). The amperometric i-t sensing of NADH showed high sensitivity (488 nA μM?1 cm?2) and an extended linear range (50 to 450 μM) with complete freedom from several common biochemical/chemical interferents, such as ascorbic acid, hydrazine, glucose, cysteine, citric acid, nitrate, and uric acid.  相似文献   

5.
The complexes [Ni(L1)(pyc)2]·2H2O (1) (L1 = C-meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; Hpyc = pyrazinecarboxylic acid) and [Cu(L2)(H-cpdc)] (2) (L2 = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane; H2-cpdc = cyclopropanedicarboxylic acid) have been synthesized and structurally characterized. The crystal structure of complex 1 shows a distorted octahedral coordination geometry around the nickel(II) center, with four secondary amines in the equatorial positions and two nitrogen atoms of the pyc? ligands in the trans positions. In complex 2, the coordination environment around the copper(II) center is a Jahn–Teller distorted octahedron with four Cu–N bonds and two axial Cu–O bonds. The electronic spectra, electrochemical and TGA behavior of the complexes are significantly affected by the nature of the axial pyc? and H-cpdc? ligands.  相似文献   

6.
Four Ag(I) coordination polymers, formulated as [Ag(L1)(tpa)0.5] n (1), {[Ag(L2)(ndc)0.5]·0.5H2ndc} n (2), [Ag(L3)0.5(ndc)0.5] n (3) and {[Ag(L3)]·H3bptc} n (4) (L1 = 4,4′-bis(pyrazole-1-ylmethyl)-biphenyl, L2 = 4,4′-bis(3,5-dimethylpyrazol-1-ylmethyl)-biphenyl, L3 = 1,4-bis(3,5-dimethylpyrazol-1-ylmethyl)benzene, H2tpa = terephthalic acid, H2ndc = 2,6-naphthalenedicarboxylic acid, H4bptc = 3,3′,4,4′-biphenyltetracarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 features the rare binodal (4,4)-connected 2D 4,4L10 topological network with a point symbol of {32·4.62·7}2{32·62·72}. Complex 2 has a folded ladder-like chain structure, which is further extended into a 3D supramolecular network via O–H···O hydrogen bonding and π···π stacking interactions. Complexes 3 and 4 both possess 1D zigzag chain structures. Complex 3 is further extended into a binodal (3,4)-connected network with the point symbol of {4.84·10}{62·82}2 by Ag···O weak interactions, while complex 4 is further connected through O–H···O hydrogen bonding and π···π interactions to afford a 2D supramolecular structure. The photoluminescence spectra and photocatalytic properties of these complexes for degradation of methylene blue and methyl orange are reported.  相似文献   

7.
A series of aliphatic nitrile functionalized benzimidazolium salts and their respective mononuclear N-heterocyclic carbene Ag(I)-NHC complexes are reported. The benzimidazolium salts were synthesized by N-alkylation of 1H-benzimidazole with an appropriate alkyl bromide, followed by reaction with either 5-bromovaleronitrile or 6-bromohexanenitrile. The respective mononuclear Ag(I)-NHC complexes were prepared by the reaction of the benzimidazolium salts with Ag2O. All the synthesized compounds were characterized by physico-chemical and spectroscopic techniques. The molecular structures of the two complexes were elucidated through single-crystal X-ray diffraction analyses. Density functional theory was used to model the structures of the other complexes. The benzimidazolium salts and their complexes were screened for cytotoxicity against a breast cancer cell line (MCF-7), using the MTT assay. All the Ag(I)-NHC complexes gave IC50 values ranging from 7.0 ± 1.06 to 12.9 ± 1.55 µM which are comparable to the standard drug, tamoxifen (IC50 = 11.2 ± 1.84 µM), while all of the benzimidazolium salts proved to be inactive.  相似文献   

8.
The three (O‐methyl)‐p‐ethoxyphenyldithiophosphonato triphenylphosphine complexes of copper, silver and gold, [(Ph3P)nM{S2P(OMe)C6H4OEt‐p}] (M = Cu, n = 2; M = Ag, Au, n = 1) investigated structurally by X‐ray diffraction exhibit remarkable structural differences. The copper compound is a four‐coordinate chelate monomer with Cu–S 2.4417(6) and 2.5048(6) Å; P–Cu–S 104.24(2)–114.01(2)°; Cu–S–P 82.49(3)° and 80.85(2)°. The silver compound is a cyclic dimer with bridging dithiophosphonato ligands and three‐coordinate silver atoms [Ag–S 2.5371(5) and 2.6867(5) Å; P–Ag–S 122.88(2)° and 122.17(2)°; Ag–S–P 89.32(2)° and 103.56(2)°]. The gold compound is monomeric with linear dicoordinate gold [Au–S 2.3218(6) Å; P–Au–S 177.72(2)°, Au–S–P 100.97(3)°].  相似文献   

9.
Palladium-catalyzed direct arylation of heteroaromatics has become a popular method for producing carbon–carbon bonds via C–H bond activation. A wide diversity of heteroaromatics such as furan, thiophenes and thiazoles can be used for this reaction. This paper reports the synthesis of N-propylphthalimide-substituted bis-(NHC)PdX2 complexes (NHC = N-heterocyclic carbene), and their catalytic activity in direct arylation reactions. The complexes have been prepared from Ag(I)NHC precursors by transmetallation and characterized by spectroscopy and elemental analysis. The bis-(NHC)PdX2 complexes show excellent activity as catalysts in the direct arylation reactions of 2-n-butylfuran, 2-n-butylthiophene and 2-isopropylthiazole.  相似文献   

10.
Cu(II) complexes of the tridentate ligand N-(methylpyridin-2-yl)-amidino-O-methylurea (L), namely [Cu(L)Cl2] and [Cu(L)ClO4]ClO4, have been investigated for interactions with DNA by spectroscopic methods and viscosity measurements. Both complexes bind to DNA through non-intercalative interactions. [Cu(L)Cl2] (K b = 2.81 × 105 M?1) shows similar DNA-binding potential to [Cu(L)ClO4]ClO4 (K b = 1.57 × 105 M?1). Investigation of the chemical nuclease properties toward plasmid pBR322 DNA by gel electrophoresis and atomic force microscopy (AFM) suggests that both complexes are able to cleave the supercoiled form (Form I) to the nicked (Form II) and linear forms (Form III) through an oxidative pathway. The possible reactive oxygen species have been investigated by the use of scavengers, indicating that hydroxyl radicals may be involved in the DNA cleavage mechanism. Both of these complexes show similar activities against selected human cancer cell lines.  相似文献   

11.
A silver(I) complex of saccharinate (sac) with pyrazine (pyz), [Ag(sac)(pyz)] n , has been synthesized and characterized by elemental analysis, IR, thermal analysis, and single-crystal X-ray diffractometry. The complex crystallizes orthorhombic space group Pnma with unit cell parameters of a = 13.0073(9) Å, b = 6.4907(6) Å, c = 13.4007(9) Å, V = 1131.37(15) Å3, and Z = 4. [Ag(sac)(pyz)] n is a one-dimensional coordination polymer, in which the sac ligand acts as a monodentate ligand through the N atom and the trigonal silver centers are linked by the bridging pyz ligands. The individual chains are connected into two-dimensional supramolemular network by aromatic π(sac)···π(pyz) stacking interactions. The FTIR spectrum of [Ag(sac)(pyz)] n has been recorded in the region and 4,000–400 cm?1. The optimized geometry, frequency, and intensity of the vibrational bands of [Ag(sac)(pyz)] n were obtained by density functional theory (DFT) at the B3LYP level. The vibrational frequencies were calculated and the scaled values have been compared with the experimental FTIR data. The observed and calculated frequencies are found to be in good agreement.  相似文献   

12.
A coordination polymer of formula [Cu(μ 1,3-N3)2(imH)2] n (1) has been synthesized by reaction of Cu(NO3)2 with imidazole and sodium azide in CH3OH/CH3CN. The complex was characterized by FTIR, elemental analysis, powder diffraction, thermogravimetric analysis, magnetic measurements, and single-crystal X-ray diffraction. The X-ray crystal structure shows that the Cu(II) centers have a distorted octahedral coordination geometry, being coordinated by two imidazole ligands at the trans positions. Each azide links two [Cu(imH)2]2+ units to form 1D zigzag chains. Variable-temperature magnetic susceptibility studies at low field reveal dominant intrachain ferromagnetic/antiferromagnetic interactions. Using a model with n = 10, the coupling parameters J AF = ?2.95 and J F = 17.99 with g = 2.12 have been determined.  相似文献   

13.
Hydrogen bonding in the Cu5(PO4)2(OH)4 polymorphs pseudomalachite, ludjibaite and reichenbachite has been studied by low-temperature single-crystal X-ray diffraction (XRD; pseudomalachite) and solid-state density functional theory (DFT; pseudomalachite, ludjibaite, reichenbachite) calculations. Pseudomalachite at 100 K is monoclinic, P21/c, a = 4.4436(4), b = 5.7320(5), c = 16.9300(15) Å, β = 91.008(8)°, V = 431.15(7) Å3 and Z = 2. The structure has been refined to R 1 = 0.025 for 1383 unique observed reflections with |F o| ≥ 4σF. DFT calculations were done with the CRYSTAL14 software package. For pseudomalachite, the difference between the calculated and experimental H sites does not exceed 0.152 Å. Structural configurations around hydroxyl groups in all three polymorphs show many similarities. Each OH5 group is involved in a three-center (bifurcated) hydrogen bond with the H···A distances in the range of 2.141–2.460 Å and the D–H···A angles in the range of 122.41°–139.30°, whereas each OH6 group forms a four-center (trifurcated) bond (H···A = 2.093–2.593 Å; D–H···A = 122.79°–137.71°). The crystal structures of the Cu5(PO4)2(OH)4 polymorphs are based on three-dimensional frameworks of Cu and P polyhedra. The copper-centered octahedra share edges to form two-dimensional layers parallel to (100) in all three structures. The layers have square voids above and beneath PO4 tetrahedra that link adjacent layers by sharing O atoms with two CuO6 octahedra each. From the topological point of view, none of the polymorphs can be obtained from another by a displacive transformation, and therefore pseudomalachite, ludjibaite and reichenbachite can be viewed as combinatorial polymorphs. According to information-based structural complexity considerations, the three phases are very similar in their configurational entropies and preferential crystallization of one phase over another cannot be entropy driven and is probably governed by other mechanisms that may involve such factors as structures of prenucleation clusters, chemical admixtures, etc.  相似文献   

14.
A new one-dimensional copper(II) polymer, [Cu4(dmapox)2(SCN)4(CH3OH)2] n , where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide, was synthesized and characterized by elemental analysis, conductivity measurement, IR, and electronic spectral studies. The crystal structure of the copper(II) complex has been determined by X-ray single-crystal diffraction. The complex crystallizes in triclinic, space group ? 1 and exhibits infinite one-dimensional copper(II) polymeric chain bridged both by bis-tridentate μ-trans-dmapox and μ-1,3-thiocyanato ligand. The environment around the copper(II) atom can be described as distorted square-pyramid. The Cu···Cu separations through the oxamidate and thiocyanato bridges are 5.246(2) Å (Cu1–Cu1i), 5.2649(14) Å (Cu2–Cu2ii), and 5.8169(15) Å (Cu1–Cu2), respectively. The interaction of the copper(II) complex with herring sperm DNA (HS-DNA) has been investigated by using absorption and emission spectral and electrochemical techniques and viscometry. The results reveal that the copper(II) complex may interact with DNA in the mode of groove binding with the intrinsic binding constant of 2.56 × 105 M?1.  相似文献   

15.
Grasses (family Poaceae) are economically important plants; they are used as crops and animal foods. Stipagrostis plumosa (L.) Munro ex T. Anderson is a member of this family and subjected to chemical and biological studies. The chromatographic techniques,  LC–ESI–MS and GC/MS were used for identification of polar and non-polar compounds in its extract. Ten compounds, including one new flavone glycoside; tricin 7-O-galactoside, three known flavones, three C-glycosyl flavones and three phenolic acids, were isolated from S. plumosa for the first time except tricin. Their structures were elucidated on the basis of extensive spectroscopic interpretation. In addition to the isolated compounds, eleven compounds were tentatively identified using LC–ESI–MS, five of them were detected for the first time from this species. 29 non polar compounds were identified using GC–MS analysis, representing 83.13% of S. plumosa diethyl ether extract. In addition to the DPPH activity evaluation, the crude extract and the isolated compounds were investigated against five human carcinoma cell lines; A549, HCT-116, HepG2, MCF-7 and PC3 at a concentration of 100 μg/ml. From the isolated compounds tricin and luteolin 6,8-di-C-glucoside could be considered as natural-free radical scavenging agents.  相似文献   

16.
The title compound {Cu[S2P(OC2H5)2](bpe)} n (1) is constructed from flexible ligand bpe (bpe = 1,2-bis(4-pyridyl)ethane) and the Cu[S2P(OC2H5)2], which was characterized by single crystal structure determination, elemental analysis, XRD, and IR spectra. X-ray diffraction studies revealed that polymeric compound 1 consists of dinuclear module to form 1-D chains with the intramolecular Cu···Cu interactions (ca. 2.63 Å). This interaction may show a profound influence on the observed blue luminescence emission spectrum for 1. Crystal data for 1 at 293(2) K: Space group P ? 1, a = 9.277(3), b = 10.504 (4), c = 31.801(1) Å, α = 92.849(3), β = 90.401(2), γ = 114.547(7)°, V = 2813.9(2) Å3, Z = 2, R 1 = 0.041.  相似文献   

17.
The present study reports the synthesis of silver nanoparticles (Ag NPs) from silver nitrate solution using leaf extracts of Commiphora caudata. The formation of Ag NPs in the colloidal solution is confirmed by UV–Vis spectroscopy analysis. The identification of biomolecules is analyzed through fourier transform infrared spectroscopy. X-ray diffraction pattern shows that an average particle size of the synthesized nanoparticles are in the range of 40–24 nm. Field emission scanning electron microscopy and transmission electron microscopy confirm the formation Ag NPs in spherical shape. The photoluminescence study of the synthesized Ag NPs interprets the influence of C caudata leaf concentrations on emission behavior. Zeta potential measurement is carried out to determine the stability of synthesized Ag NPs. GC–MS analysis revealed that the C. caudata contained 11 compounds, such as Stigmasterol (24.14 %), Hexacosanoic acid, methyl ester (15.13 %) and 2-bromophenyl morpholine-4-carboxylate (11.71 %). The antibacterial activity of Ag NPs shows that these bio capped Ag NPs have higher inhibitory action for Escherichia coli, Klebsiella pheumoniea, Micrococcus flavus, Pseudomonas aeruginosa, Bacillus subtilis, Bacillus pumilus, Staphylococcus aureus.  相似文献   

18.
We describe the preparation and crystal structures of the ionic complexes [Cu(bipy)2{ONC(CN)2}]CF3SO3 (1b), [Cu(phen)2{ONC(CN)2}]PF6 (2p) and [Cu(bipy)2{ONC(CN)2}]PF6 (2b). In the complex cations [Cu(L)2{ONC(CN)2}]+ (L is 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen)) the two molecules of bipy or phen coordinate to the copper atom through two nitrogen atoms along with the oxygen atom of the nitrosodicyanomethanide anion, ONC(CN) 2 ? , to form a {CuN4O} chromophore with a distorted square pyramidal coordination sphere in (1b) and (2b) and a distorted trigonal bipyramidal geometry in (2p). The basal plane in (1b) and (2b) is formed by an oxygen atom coordinated at the Cu1–O1 distance of 1.990(2) and 2.002(2) Å, respectively, and three nitrogen atoms coordinated to the copper atom at similar distances with the average of 2.01(2) and 2.00(3) Å, respectively. The axial position is occupied by the fourth N atom at the longer distance of 2.222(2) and 2.185(2) Å, respectively. The trifluoromethanesulfonate anion (triflate), CF3SO 3 ? , in (1b) might be considered as very weakly coordinated in the opposite axial position (Cu1–O2 = 2.719(2) Å). The equatorial plane in (2p) is formed by an oxygen atom coordinated at the Cu1–O1 distance of 1.975(3) Å, and two nitrogen atoms from different phen molecules coordinated to the copper atom at the same distance within 2 σ with the average distance of 2.124(2) Å. The axial positions are occupied by remaining two nitrogen atoms coordinated at shorter distance (average Cu–N = 1.99(3) Å). The hexafluorophosphate anions, PF 6 ? , in (2p) and (2b) remain uncoordinated. Besides the ionic forces, the structures of (2p) and (2b) may be stabilized by very weak C–H···F whereas the structure of (1b) by very weak C–H···F, C–H···O and C–H···N hydrogen bonds. The structural–spectral correlations are also discussed.  相似文献   

19.
Cytochrome P450 55B1 from Chlamydomonas reinhardtii is reported to function as a nitric oxide reductase (NOR). Here, we expressed the cytochrome P450 55B1 gene with an HIS-tag in E scherichia coli using a pET28a vector. The native protein was produced at a level of 1.59 μmol/g of total protein, with approximately 85% of the P450 being soluble. The CYP55B1 protein was characterized spectrally and purified by a HIS-trap column. This procedure allowed recovery of 45% of the expressed protein and CYP55B1 with a specific content of 0.70 μmol/g of the total protein, which showed a single band on a SDS-PAGE and Western blot. The direct electrochemistry of CYP55B1 in dihexadecylphosphate (DHP) film was realized with an electric potential at ?0.47 V at the scan rate of 1 V s?1. We studied the in vitro interaction between P450 55B1 and NO by the fluorescence spectrometric method. The results show that the fluorescence intensity of iron-porphyrin in P450 55B1 changes gradually with the addition of NO. The fluorescence intensity change values against NO concentrations were plotted, and it showed a linear range of NO from 0 to 22.5 μM with a sensitivity of 0.15 μM/AU and a detection limit of 0.15 μM.  相似文献   

20.
Three Cu(II) complexes: [Cu2(μ-L)2(HCOO)2(H2O)2] (1), [Cu2(μ-L)2(NO3)2] (2), and [Cu4(μ-L)6(CH3COO)2]·2H2O (3) constructed from 2-(1H-pyrazol-3-yl) pyridine (HL) were synthesized and structurally characterized by X-ray single-crystal diffraction. The X-ray analyses revealed that all three complexes feature a di-ligand-bridged Cu2 unit, which is nearly planar. Each deprotonated ligand chelates one copper atom by means of N,N(pyridine-pyrazole) pocket and simultaneously bridges the other one by the N,N(pyrazole) groups. The remaining coordination sites of the Cu(II) centers are either occupied by different anionic coligands to balance the charge, or bridged by another L to develop a tetranuclear structure. Magnetic investigations reveal that the distortion of the Cu(II) coordination geometry (as described by the τ values) and the coplanarity of the Cu–(N=N)2–Cu unit have cooperative effects on the antiferromagnetic strength of these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号