首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The objective of this part of the paper is to summarize the information concerning the authors' works in the field of simulation of two-phase gas-particle turbulent flows with heat transfer and combustion. A kinetic equation had been derived for the probability density function (PDF) of the particle velocity, temperature, and mass distributions in turbulent flows. This PDF equation is used for the construction of the governing conservation equations of mass, momentum, and heat transfer in the dispersed particle phase.The numerical scheme incorporates two-phase fluid dynamics, convective and radiative heat transfer, and combustion. The proposed models have been applied to the calculation of various particle-laden turbulent flows in jets, combustion and gasification chambers, and furnaces.  相似文献   

2.
A finite volume method for the calculation of laminar and turbulent fluid flows inside constricted tubes and ducts is described. The selected finite volume method is based on curvilinear non-orthogonal co-ordinates (body-fitted co-ordinates) and a non-staggered grid arrangement. The grids are either generated by transfinite interpolation or an elliptic grid generator. The method is employed for calculation of laminar flows through a tube, a converging-diverging duct and different constricted tubes by both a two- and a three-dimensional computer program. In addition, turbulent flow through an axisymmetric constricted tube is calculated. Both the power law scheme and the second-order upwind scheme are used. The calculated results are compared with the experimental data and with other numerical solutions.  相似文献   

3.
Fully developed turbulent pipe flow at low Re-number is studied by means of direct numerical simulation (DNS). In contrast to many previous DNS's of turbulent flows in rectangular geometries, the present DNS code, developed for a cylindrical geometry, is based on the finite volume technique rather than being based on a spectral method. The statistical results are compared with experimental data obtained with two different experimental techniques. The agreement between numerical and experimental results is found to be good which indicates that the present DNS code is suited for this kind of numerical simulations.  相似文献   

4.
This paper describes parallel computing approach for simulating turbulent flows using a moment base lattice Boltzmann method. The distribution functions of the lattice Boltzmann method are expressed by corresponding moments. Choosing proper relaxation times for higher order moments, a minimum numerical dissipation is implicitly added to stabilise the method at high Reynolds numbers. Validation of the method is made by computing free decaying periodic turbulent flows and fully developed turbulent channel flows on a GPU platform. Though the present method requires additional work to calculate the higher order moments, it is shown that additional computational cost is negligible in the GPU computing. The numerical results stably obtained for the turbulent flows are in good agreement with those of a pseudo-spectral method and corresponding DNS database.  相似文献   

5.
Interactions between different scales in turbulence were studied starting from the incompressible Navier-Stokes equations. The integral and differential formulae of the shortrange viscous stresses, which express the short-range interactions between contiguous scales in turbulence, were given. A concept of the resonant-range interactions between extreme contiguous scales was introduced and the differential formula of the resonant-range viscous stresses was obtained. The short- and resonant-range viscous stresses were applied to deduce the large-eddy simulation ( LES ) equations as well as the multiscale equations, which are approximately closed and do not contain any empirical constants or relations. The properties and advantages of using the multiscale equations to compute turbulent flows were discussed. The short-range character of the interactions between the scales in turbulence means that the multiscale simulation is a very valuable technique for the calculation of turbulent flows. A few numerical examples were also given.  相似文献   

6.
The aim of this work is to present a new numerical method to compute turbulent flows in complex configurations. With this in view, a k-? model with wall functions has been introduced in a mixed finite volume/finite element method. The numerical method has been developed to deal with compressible flows but is also able to compute nearly incompressible flows. The physical model and the numerical method are first described, then validation results for an incompressible flow over a backward-facing step and for a supersonic flow over a compression ramp are presented. Comparisons are performed with experimental data and with other numerical results. These simulations show the ability of the present method to predict turbulent flows, and this method will be applied to simulate complex industrial flows (flow inside the combustion chamber of gas turbine engines). The main goal of this paper is not to test turbulence models, but to show that this numerical method is a solid base to introduce more sophisticated turbulence model.  相似文献   

7.
This paper presents a review of authors' collective works in the field of two-phase flow modeling done in the past few decades. The paper is aimed at the construction of mathematical models for simulation of particle-laden turbulent flows. A kinetic equation was obtained for the probability density function (PDF) of the particle velocity distribution in turbulent flows. The proposed kinetic equation describes both the interaction of particles with turbulent eddies of the carrier phase and particle-particle collisions. This PDF equation is used for the derivation of different schemes describing turbulent momentum transfer in the dispersed particle phase. The turbulent characteristics of the gaseous phase are calculated on the basis of the k - turbulence model with a modulation effect of particles on the turbulence.

The constructed models have been applied to the calculation of various two-phase gas-particle turbulent flows in jets and channels as well as particle deposition in tubes and separators. For validating the theoretical and numerical results, a wide range of comparisons with experimental data from Russian and foreign sources has been done.  相似文献   


8.
In low-Reynolds-number turbulent flows, the influence of the molecular viscosity is important. The turbulence models which are applied to those flows should include the low-Reynolds-number effect. In this study, turbulent flow with the molecular viscosity effect is analyzed theoretically with the aid of a two-scale direct-interaction approximation (TSDIA) and the energy spectrum and a new low-Reynolds-number-type eddy-viscosity representation are derived. An priori test for the model expression on the basis of the result of direct numerical simulation (DNS) for turbulent Couette flows is performed. Received 5 July 2002 and accepted 8 January 2003 Published online 25 March 2003 Communicated by T.B. Gatski  相似文献   

9.
This paper presents a numerical method for simulating turbulent flows via coupling the Boltzmann BGK equation with Spalart–Allmaras one equation turbulence model. Both the Boltzmann BGK equation and the turbulence model equation are carried out using the finite volume method on unstructured meshes, which is different from previous works on structured grid. The application of the gas‐kinetic scheme is extended to the simulation of turbulent flows with arbitrary geometries. The adaptive mesh refinement technique is also adopted to reduce the computational cost and improve the efficiency of meshes. To organize the unstructured mesh data structure efficiently, a non‐manifold hybrid mesh data structure is extended for polygonal cells. Numerical experiments are performed on incompressible flow over a smooth flat plate and compressible turbulent flows around a NACA 0012 airfoil using unstructured hybrid meshes. These numerical results are found to be in good agreement with experimental data and/or other numerical solutions, demonstrating the applicability of the proposed method to simulate both subsonic and transonic turbulent flows. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The compressible flows of plane free jets and jets of the intake-stroke of a rectangular piston-engine model are investigated by numerical simulations. The observed vortical structures appear to be the well-known coherent structures of turbulent shear layers. The simulated structures are compared to experimental data by means of density fields and turbulent statistics taken from different authors. The computed flow depends on physical as well as on numerical parameters. The good agreement with the experimental data is obtained by direct simulation without any turbulence model.  相似文献   

11.
An improved large eddy simulation using a dynamic second-order sub-grid-scale (SGS) stress model has been developed to model the governing equations of dense turbulent particle-liquid two-phase flows in a rotating coordinate system, and continuity is conserved by a mass-weighted method to solve the filtered governing equations. In the current second-order SGS model, the SGS stress is a function of both the resolved strain-rate and rotation-rate tensors, and the model parameters are obtained from the dimensional consistency and the invariants of the strain-rate and the rotation-rate tensors. In the numerical calculation, the finite volume method is used to discretize the governing equations with a staggered grid system. The SIMPLEC algorithm is applied for the solution of the discretized governing equations. Body-fitted coordinates are used to simulate the two-phase flows in complex geometries. Finally the second-order dynamic SGS model is successfully applied to simulate the dense turbulent particle-liquid two-phase flows in a centrifugal impeller. The predicted pressure and velocity distributions are in good agreement with experimental results. The project supported by the National Natural Science Foundation of China (50779069 and 90510007), the Start-up Scientific Research Foundation of China Agricultural University (2006021) and the Beijing Natural Science Foundation (3071002).  相似文献   

12.
This article provides a strategy for solving incompressible turbulent flows, which combines compact finite difference schemes and parallel computing. The numerical features of this solver are the semi-implicit time advancement, the staggered arrangement of the variables and the fourth-order compact scheme discretisation. This is the usual way for solving accurately turbulent incompressible flows. We propose a new strategy for solving the Helmholtz/Poisson equations based on a parallel 2d-pencil decomposition of the diagonalisation method. The compact scheme derivatives are computed with the parallel diagonal dominant (PDD) algorithm, which achieves good parallel performances by introducing a bounded numerical error. We provide a new analysis of its effect on the numerical accuracy and conservation features. Several numerical experiments, including two simulations of turbulent flows, demonstrate that the PDD algorithm maintains the accuracy and conservation features, while conserving a good parallel performance, up to 4096 cores.  相似文献   

13.
A Hermitian–Fourier numerical method for solving the Navier–Stokes equations with one non‐homogeneous direction had been presented by Schiestel and Viazzo (Internat. J. Comput. Fluids 1995; 24 (6):739). In the present paper, an extension of the method is devised for solving problems with two non‐homogeneous directions. This extension is indeed not trivial since new algorithms will be necessary, in particular for pressure calculation. The method uses Hermitian finite differences in the non‐periodic directions whereas Fourier pseudo‐spectral developments are used in the remaining periodic direction. Pressure–velocity coupling is solved by a simplified Poisson equation for the pressure correction using direct method of solution that preserves Hermitian accuracy for pressure. The turbulent flow after a backward facing step has been used as a test case to show the capabilities of the method. The applications in view are mainly concerning the numerical simulation of turbulent and transitional flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A hybrid unsteady Reynolds-averaged numerical simulation (U-RANS) and probability density function (PDF) method is developed for turbulent non-reactive and reactive flows. The resulting modeled equations are solved by a consistent hybrid finite volume and Lagrangian Monte-Carlo particle method. Both turbulent non-reactive and reactive flows in a rectangular channel containing a triangular-shaped bluff-body are simulated. One-step and two-step mechanisms for propane/air combustion are used for the reactive case. The time-averaged results are compared with both experimental data and numerical results from the literature using large eddy simulation (LES) and steady RANS. The results of the present method are in good agreement with the experimental data, and they improve the numerical results available in the literature.  相似文献   

15.
A turbulent channel flow and the flow around a cubic obstacle are calculated by the moving particle semi‐implicit method with the subparticle‐scale turbulent model and a wall model, which is based on the zero equation RANS (Reynolds Averaged Navier‐Stokes). The wall model is useful in practical problems that often involve high Reynolds numbers and wall turbulence, because it is difficult to keep high resolution in the near‐wall region in particle simulation. A turbulent channel flow is calculated by the present method to validate our wall model. The mean velocity distribution agrees with the log‐law velocity profile near the wall. Statistical values are also the same order and tendency as experimental results with emulating viscous layer by the wall model. We also investigated the influence of numerical oscillations on turbulence analysis in using the moving particle semi‐implicit method. Finally, the turbulent flow around a cubic obstacle is calculated by the present method to demonstrate capability of calculating practical turbulent flows. Three characteristic eddies appear in front of, over, and in the back of the cube both in our calculation and the experimental result that was obtained by Martinuzzi and Tropea. Mean velocity and turbulent intensity profiles are predicted in the same order and have similar tendency as the experimental result. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
17.
It is well known that the inherent three-dimensional and unsteady nature of turbulent flows is a stumbling block for all approaches aimed at resolving their spatial and temporal variability. The pseudo-direct numerical simulation (P-DNS) method for turbulent flows, proposed by the authors in a previous publication, focused on resolving the spatial variability, leaving the task of solving the temporal evolution to a highly simplified, parameter dependent model, to be adjusted in a case by case basis. Although some auspicious results were obtained, the applicability of P-DNS for problems of industrial interest required a more sophisticated method to deal with the temporal variability. In this sense, the present work proposes a new, parameter free, data-driven memory model for P-DNS. The model is based on the study of off-line DNS solutions of turbulent flows transitioning between statistically steady states in simple domains. The new P-DNS model is tested and successfully compared against existing methods in selected three-dimensional turbulent flows.  相似文献   

18.
This article presents a numerical investigation of turbulent flow in an axisymmetric separated and reattached flow over a longitudinal blunt circular cylinder. The governing equations were discretized by the finite-volume method and SIMPLER method was applied to solve the equations on a staggered grid. The turbulent flow was numerically simulated using the standard k–ε, Abe–Kondoh–Nagano (AKN) and Shear Stress Transport (SST) turbulence models. The comparisons made between numerical results and experimental measurements showed that the SST model is superior to other models in the present calculation.Computations were performed for three different Reynolds numbers of 6000, 10 000 and 20 000 based on the cylinder diameter. To our knowledge, this study represents the first numerical investigation of the present flow configuration. The computational results were validated with the available experimental data of reattachment length, mean velocity distribution and wall static pressure coefficient in the turbulent blunt circular cylinder flows. Further, other characteristics of the flow, such as turbulent kinetic energy, pressure, streamlines, and the velocity vectors are discussed.The results show that the main characteristics of the turbulence flow in the separation region, such as reattachment length or velocity profiles, are nearly independent of the Reynolds number. The obtained results showed that a secondary separation bubble may appear in the main separation bubble near the leading edge. Furthermore, it was found that the turbulent kinetic energy has a large effect on the formation of the secondary bubble.  相似文献   

19.
In order to build a unified modelling for granular media by means of Eulerian averaged equations, it is necessary to study two contributions in the effective Cauchy stress tensor: the first one concerns solid and fluid matter, including contact and collisions between grains; the second one focuses on the random movements of grains and fluid, similar to Reynolds stress for turbulent flows. It is shown that the point of view of piecewise continuous media already used for two phase flows allows one to derive a constitutive equation for the first contribution, under the form of a partial differential equation. Similarly as for the Reynolds stress in turbulent flows, this equation cannot be written only in terms of averaged quantities without adequate approximations. The structure of the closed equation is discussed with respect to irreversible thermodynamics, and in connection with some already existing models. It is emphasised that numerical simulations by the discrete elements method can be used in order to validate these approximations, through numerical experiments statistically considered. Finally an extension of this approach to the second contribution of the effective Cauchy stress tensor is briefly discussed, showing how the modelling of both contributions have to be coupled.   相似文献   

20.
The development of new aeronautic projects require accurate and efficient simulations of compressible flows in complex geometries. It is well known that most flows of interest are at least locally turbulent and that the modelling of this turbulence is critical for the reliability of the computations. A turbulence closure model which is both cheap and reasonably accurate is an essential part of a compressible code. An implicit algorithm to solve the 2D and 3D compressible Navier–Stokes equations on unstructured triangular/tetrahedral grids has been extended to turbulent flows. This numerical scheme is based on second-order finite element–finite volume discretization: the diffusive and source terms of the Navier–Stokes equations are computed using a finite element method, while the other terms are computed with a finite volume method. Finite volume cells are built around each node by means of the medians. The convective fluxes are evaluated with the approximate Riemann solver of Roe coupled with the van Albada limiter. The standard k–ϵ model has been introduced to take into account turbulence. Implicit integration schemes with efficient numerical methods (CGS, GMRES and various preconditioning techniques) have also been implemented. Our interest is to present the whole method and to demonstrate its limitations on some well-known test cases in three-dimensional geometries. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号