首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Comparative study of several algorithms for flexible ligand docking   总被引:3,自引:0,他引:3  
We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein-ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The docking accuracy of the methods was judged based on the corresponding rank-one solutions. We have found that the fraction of molecules docked with acceptable accuracy is 0.47, 0.31, 0.35, 0.52 and 0.93 for, respectively, AutoDock, DOCK, FlexX, GOLD and ICM. Thus ICM provided the highest accuracy in ligand docking against these receptors. The results from the other programs are found to be less accurate and of approximately the same quality. A speed comparison demonstrated that FlexX was the fastest and AutoDock was the slowest among the tested docking programs. The database screening was performed using DOCK, FlexX and ICM. ICM was able to identify the original ligands within the top 1% of the total library in 17 cases. The corresponding number for DOCK and FlexX was 7 and 8, respectively. We have estimated that in virtual database screening, 50% of the potentially active compounds will be found among approximately 1.5% of the top scoring solutions found with ICM and among approximately 9% of the top scoring solutions produced by DOCK and FlexX.  相似文献   

2.
An increasing number of docking/scoring programs are available that use different sampling and scoring algorithms. A reliable scoring function is the crucial element of such approaches. Comparative studies are needed to evaluate their current capabilities. DOCK4 with force field and PMF scoring as well as FlexX were used to evaluate the predictive power of these docking/scoring approaches to identify the correct binding mode of 61 MMP-3 inhibitors in a crystal structure of stromelysin and also to rank them according to their different binding affinities. It was found that DOCK4/PMF scoring performs significantly better than FlexX and DOCK4/FF in both ranking ligands and predicting their binding modes. Most notably, DOCK4/PMF was the only scoring/docking approach that found a significant correlation between binding affinity and predicted score of the docked inhibitors. However, comparing only those cases where the correct binding mode was identified (scoring highest among sampled poses), FlexX showed the best `fine tuning' (lowest rmsd) in predicted binding modes. The results suggest that not so much the sampling procedure but rather the scoring function is the crucial element of a docking program.  相似文献   

3.
We report on the development and validation of a new version of DOCK. The algorithm has been rewritten in a modular format, which allows for easy implementation of new scoring functions, sampling methods and analysis tools. We validated the sampling algorithm with a test set of 114 protein-ligand complexes. Using an optimized parameter set, we are able to reproduce the crystal ligand pose to within 2 A of the crystal structure for 79% of the test cases using our rigid ligand docking algorithm with an average run time of 1 min per complex and for 72% of the test cases using our flexible ligand docking algorithm with an average run time of 5 min per complex. Finally, we perform an analysis of the docking failures in the test set and determine that the sampling algorithm is generally sufficient for the binding pose prediction problem for up to 7 rotatable bonds; i.e. 99% of the rigid ligand docking cases and 95% of the flexible ligand docking cases are sampled successfully. We point out that success rates could be improved through more advanced modeling of the receptor prior to docking and through improvement of the force field parameters, particularly for structures containing metal-based cofactors.  相似文献   

4.
Structure-based virtual screening techniques require reliable scoring functions to discriminate potential substrates effectively. In this study we compared the performance of GOLD, PMF, DOCK and FlexX scoring functions in FlexX flexible docking to cytochrome P450cam binding site. Crystal structures of protein-substrate complexes were most effectively reproduced by the FlexX/PMF method. On the other hand, the FlexX/GOLD approach provided the best correlation between experimental binding constants and predicted scores. Binding modes selected by the FlexX/PMF approach were rescored by GOLD to obtain a reliable measure of binding energetics. The effectiveness of the FlexX/PMF/GOLD method was demonstrated by the correct classification of 32 out of the 33 experimentally studied compounds and also in a virtual HTS test on a library of 10,000 compounds. Although almost all the available functions were developed to be general, our study on cytochrome P450cam substrates suggests that careful selection or even tailoring the scoring function might increase the prediction power of virtual screens significantly. The FlexX/PMF/GOLD methodology was tested on cytochrome P450 3A4 substrates and inhibitors. This preliminary study revealed that the combined function was able to recognise 334 out of the 345 compounds bound to 3A4.  相似文献   

5.
Here, the comparisons of performance of nine consensus scoring strategies, in which multiple scoring functions were used simultaneously to evaluate candidate structures for a protein-ligand complex, in combination with nine scoring functions (FlexX score, GOLD score, PMF score, DOCK score, ChemScore, DrugScore, PLP, ScreenScore, and X-Score), were carried out. The systematic naming of consensus scoring strategies was also proposed. Our results demonstrate that choosing the most appropriate type of consensus score is essential for model selection in computational docking; although the vote-by-number strategy was an effective selection method, the number-by-number and rank-by-number strategies were more appropriate when computational tractability was taken into account. By incorporating these consensus scores into the FlexX program, reasonable complex models can be obtained more efficiently than those selected by independent FlexX scores. These strategies might also improve the scoring of other docking programs, and more-effective structure-based drug design should result from these improvements.  相似文献   

6.
Virtual screening by molecular docking has become a widely used approach to lead discovery in the pharmaceutical industry when a high-resolution structure of the biological target of interest is available. The performance of three widely used docking programs (Glide, GOLD, and DOCK) for virtual database screening is studied when they are applied to the same protein target and ligand set. Comparisons of the docking programs and scoring functions using a large and diverse data set of pharmaceutically interesting targets and active compounds are carried out. We focus on the problem of docking and scoring flexible compounds which are sterically capable of docking into a rigid conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments superior to the two alternative methods, while GOLD outperforms DOCK on average. The study also shows that docking into multiple receptor structures can decrease the docking error in screening a diverse set of active compounds.  相似文献   

7.
We present the results of a comprehensive study in which we explored how the docking procedure affects the performance of a virtual screening approach. We used four docking engines and applied 10 scoring functions to the top-ranked docking solutions of seeded databases against six target proteins. The scores of the experimental poses were placed within the total set to assess whether the scoring function required an accurate pose to provide the appropriate rank for the seeded compounds. This method allows a direct comparison of library ranking efficacy. Our results indicate that the LigandFit/Ligscore1 and LigandFit/GOLD docking/scoring combinations, and to a lesser degree FlexX/FlexX, Glide/Ligscore1, DOCK/PMF (Tripos implementation), LigandFit1/Ligscore2 and LigandFit/PMF (Tripos implementation) were able to retrieve the highest number of actives at a 10% fraction of the database when all targets were looked upon collectively. We also show that the scoring functions rank the observed binding modes higher than the inaccurate poses provided that the experimental poses are available. This finding stresses the discriminatory ability of the scoring algorithms, when better poses are available, and suggests that the number of false positives can be lowered with conformers closer to bioactive ones.  相似文献   

8.
Summary An approach for docking covalently bound ligands in protein enzymes or receptors was implemented in MacDOCK, a similarity-driven docking program based on DOCK 4.0. This approach was tested with a small number of covalent ligand–protein structures, using both native and non-native protein structures. In all cases, MacDOCK was able to generate orientations consistent with the known covalent binding mode of these complexes, with a performance similar to that of other docking programs. This method was also applied to search for known covalent thrombin inhibitors in a medium-sized molecular database (ca. 11,000 compounds). Detection of functional groups suitable for covalent docking was carried out automatically. A significant enrichment in known active molecules in the first 5% of the database was obtained, showing that MacDOCK can be used efficiently for the virtual screening of covalently bound ligands.  相似文献   

9.
We are participating in the challenge of identifying active compounds for target proteins using structure-based virtual screening (SBVS). We use an in-house customized docking program, CONSENSUS-DOCK, which is a customized version of the DOCK4 program in which three scoring functions (DOCK4, FlexX and PMF) and consensus scoring have been implemented. This paper compares the docking calculation results obtained using CONSENSUS-DOCK and DOCK4, and demonstrates that CONSENSUS-DOCK produces better results than DOCK4 for major X-ray structures obtained from the Protein Data Bank (PDB).  相似文献   

10.
In order to identify novel chemical classes of factor Xa inhibitors, five scoring functions (FlexX, DOCK, GOLD, ChemScore and PMF) were engaged to evaluate the multiple docking poses generated by FlexX. The compound collection was composed of confirmed potent factor Xa inhibitors and a subset of the LeadQuest screening compound library. Except for PMF the other four scoring functions succeeded in reproducing the crystal complex (PDB code: 1FAX). During virtual screening the highest hit rate (80%) was demonstrated by FlexX at an energy cutoff of -40 kJ/mol, which is about 40-fold over random screening (2.06%). Limited results suggest that presenting more poses of a single molecule to the scoring functions could deteriorate their enrichment factors. A series of promising scaffolds with favorable binding scores was retrieved from LeadQuest. Consensus scoring by pair-wise intersection failed to enrich the hit rate yielded by single scorings (i.e. FlexX). We note that reported successes of consensus scoring in hit rate enrichment could be artificial because their comparisons were based on a selected subset of single scoring and a markedly reduced subset of double or triple scoring. The findings presented in this report are based upon a single biological system and support further studies.  相似文献   

11.
The main challenge for the ??hit-to-lead?? stage in the drug discovery process relies on the accuracy of existing docking methods. In fact, accuracy of docking methods depends not only on the scoring function used to rank the poses but also on the ability of the docking method to reproduce the experimental binding mode. At this purpose, the performance of different approximations to properly dock and score compounds with known activity in a narrow range of IC50 values was analyzed. A set of five ATP-competitive CDK6 inhibitors and three receptor conformations for CDK6 were considered for analysis, and three methodologies were used and analyzed in order to include different degrees of receptor flexibility. Thus, a completely rigid receptor is considered when using Glide, while the so-called Induced Fit Docking Protocol accounts for receptor sidechain rearrangements. Finally, force field calculations were also performed in order to consider a completely flexible receptor.  相似文献   

12.
Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added. In the current study, we developed a new ligand-biased ensemble receptor docking method and composite scoring function which combine the use of ligand-based atomic property field (APF) method with receptor structure-based docking. This method helps us to correctly dock 30 out of 36 ligands presented by the D3R docking challenge. For the six mis-docked ligands, the cognate receptor structures prove to be too different from the 40 available experimental Pocketome conformations used for docking and could be identified only by receptor sampling beyond experimentally explored conformational subspace.  相似文献   

13.
Anilinopyrazoles as CDK2 inhibitors can adopt multiple binding modes depending on the substituents at the 5-position of the pyrazole ring, based on CDK2/cyclin A crystallographic studies. Three commercially available docking programs, FlexX, GOLD, and LigandFit, were tested with 63 anilinopyrazole analogues in an attempt to reproduce the binding modes observed in the crystal structures. Each docking program gave different ligand conformations depending on the scoring or energy functions used. FlexX/drugscore, GOLD/chemscore, and LigandFit/plp were the best combinations of each docking program in reproducing the ligand conformations observed in the crystal structures. The 63 analogues were divided into two groups, type-A and type-B, depending on the substituent at the 5-position of the pyrazole ring. Although an alternate binding mode, observed in a crystal structure of one type-B compound, could not be reproduced with any of the above docking/scoring combinations, GOLD, with a template constraint based on the crystal structure coordinates, was able to reproduce the pose. As for type-A compounds, all docking conditions yielded similar poses to those observed in crystal structures. When predicting activities by scoring programs, the combination of docking with LigandFit/plp and scoring with LIGSCORE1_CFF gave the best correlation coefficient (r=0.60) between experimental pIC50 values and top-ranked rescores of 30 poses of each compound. With regard to type-A compounds, the correlation was 0.69. However, when 11 compounds, whose top-ranked rescored poses did not demonstrate the correct binding modes in reference to the crystal structure, were removed, the correlation rose to 0.75. Consequently, predicting activity on the basis of correct binding modes was found to be reliable.  相似文献   

14.
Protein-ligand docking can be formulated as a parameter optimization problem associated with an accurate scoring function, which aims to identify the translation, orientation, and conformation of a docked ligand with the lowest energy. The parameter optimization problem for highly flexible ligands with many rotatable bonds is more difficult than that for less flexible ligands using genetic algorithm (GA)-based approaches, due to the large numbers of parameters and high correlations among these parameters. This investigation presents a novel optimization algorithm SODOCK based on particle swarm optimization (PSO) for solving flexible protein-ligand docking problems. To improve efficiency and robustness of PSO, an efficient local search strategy is incorporated into SODOCK. The implementation of SODOCK adopts the environment and energy function of AutoDock 3.05. Computer simulation results reveal that SODOCK is superior to the Lamarckian genetic algorithm (LGA) of AutoDock, in terms of convergence performance, robustness, and obtained energy, especially for highly flexible ligands. The results also reveal that PSO is more suitable than the conventional GA in dealing with flexible docking problems with high correlations among parameters. This investigation also compared SODOCK with four state-of-the-art docking methods, namely GOLD 1.2, DOCK 4.0, FlexX 1.8, and LGA of AutoDock 3.05. SODOCK obtained the smallest RMSD in 19 of 37 cases. The average 2.29 A of the 37 RMSD values of SODOCK was better than those of other docking programs, which were all above 3.0 A.  相似文献   

15.
A database consisting of 780 ligand-receptor complexes, termed SB2010, has been derived from the Protein Databank to evaluate the accuracy of docking protocols for regenerating bound ligand conformations. The goal is to provide easily accessible community resources for development of improved procedures to aid virtual screening for ligands with a wide range of flexibilities. Three core experiments using the program DOCK, which employ rigid (RGD), fixed anchor (FAD), and flexible (FLX) protocols, were used to gauge performance by several different metrics: (1) global results, (2) ligand flexibility, (3) protein family, and (4) cross-docking. Global spectrum plots of successes and failures vs rmsd reveal well-defined inflection regions, which suggest the commonly used 2 ? criteria is a reasonable choice for defining success. Across all 780 systems, success tracks with the relative difficulty of the calculations: RGD (82.3%) > FAD (78.1%) > FLX (63.8%). In general, failures due to scoring strongly outweigh those due to sampling. Subsets of SB2010 grouped by ligand flexibility (7-or-less, 8-to-15, and 15-plus rotatable bonds) reveal that success degrades linearly for FAD and FLX protocols, in contrast to RGD, which remains constant. Despite the challenges associated with FLX anchor orientation and on-the-fly flexible growth, success rates for the 7-or-less (74.5%) and, in particular, the 8-to-15 (55.2%) subset are encouraging. Poorer results for the very flexible 15-plus set (39.3%) indicate substantial room for improvement. Family-based success appears largely independent of ligand flexibility, suggesting a strong dependence on the binding site environment. For example, zinc-containing proteins are generally problematic, despite moderately flexible ligands. Finally, representative cross-docking examples, for carbonic anhydrase, thermolysin, and neuraminidase families, show the utility of family-based analysis for rapid identification of particularly good or bad docking trends, and the type of failures involved (scoring/sampling), which will likely be of interest to researchers making specific receptor choices for virtual screening. SB2010 is available for download at http://rizzolab.org .  相似文献   

16.
17.
Protein-ligand interaction fingerprints have been used to postprocess docking poses of three ligand data sets: a set of 40 low-molecular-weight compounds from the Protein Data Bank, a collection of 40 scaffolds from pharmaceutically relevant protein ligands, and a database of 19 scaffolds extracted from true cdk2 inhibitors seeded in 2230 scaffold decoys. Four popular docking tools (FlexX, Glide, Gold, and Surflex) were used to generate poses for ligands of the three data sets. In all cases, scoring by the similarity of interaction fingerprints to a given reference was statistically superior to conventional scoring functions in posing low-molecular-weight fragments, predicting protein-bound scaffold coordinates according to the known binding mode of related ligands, and screening a scaffold library to enrich a hit list in true cdk2-targeted scaffolds.  相似文献   

18.
The evaluation of ligand conformations is a crucial aspect of structure-based virtual screening, and scoring functions play significant roles in it. While consensus scoring (CS) generally improves enrichment by compensating for the deficiencies of each scoring function, the strategy of how individual scoring functions are selected remains a challenging task when few known active compounds are available. To address this problem, we propose feature selection-based consensus scoring (FSCS), which performs supervised feature selection with docked native ligand conformations to select complementary scoring functions. We evaluated the enrichments of five scoring functions (F-Score, D-Score, PMF, G-Score, and ChemScore), FSCS, and RCS (rank-by-rank consensus scoring) for four different target proteins: acetylcholine esterase (AChE), thrombin (thrombin), phosphodiesterase 5 (PDE5), and peroxisome proliferator-activated receptor gamma (PPARgamma). The results indicated that FSCS was able to select the complementary scoring functions and enhance ligand enrichments and that it outperformed RCS and the individual scoring functions for all target proteins. They also indicated that the performances of the single scoring functions were strongly dependent on the target protein. An especially favorable result with implications for practical drug screening is that FSCS performs well even if only one 3D structure of the protein-ligand complex is known. Moreover, we found that one can infer which scoring functions significantly enrich active compounds by using feature selection before actual docking and that the selected scoring functions are complementary.  相似文献   

19.
To help improve the accuracy of protein-ligand docking as a useful tool for drug discovery, we developed MPSim-Dock, which ensures a comprehensive sampling of diverse families of ligand conformations in the binding region followed by an enrichment of the good energy scoring families so that the energy scores of the sampled conformations can be reliably used to select the best conformation of the ligand. This combines elements of DOCK4.0 with molecular dynamics (MD) methods available in the software, MPSim. We test here the efficacy of MPSim-Dock to predict the 64 protein-ligand combinations formed by starting with eight trypsin cocrystals, and crossdocking the other seven ligands to each protein conformation. We consider this as a model for how well the method would work for one given target protein structure. Using as a criterion that the structures within 2 kcal/mol of the top scoring include a conformation within a coordinate root mean square (CRMS) of 1 A of the crystal structure, we find that 100% of the 64 cases are predicted correctly. This indicates that MPSim-Dock can be used reliably to identify strongly binding ligands, making it useful for virtual ligand screening.  相似文献   

20.
Improving the scoring functions for small molecule-protein docking is a highly challenging task in current computational drug design. Here we present a novel consensus scoring concept for the prediction of binding modes for multiple known active ligands. Similar ligands are generally believed to bind to their receptor in a similar fashion. The presumption of our approach was that the true binding modes of similar ligands should be more similar to each other compared to false positive binding modes. The number of conserved (consensus) interactions between similar ligands was used as a docking score. Patterns of interactions were modeled using ligand receptor interaction fingerprints. Our approach was evaluated for four different data sets of known cocrystal structures (CDK-2, dihydrofolate reductase, HIV-1 protease, and thrombin). Docking poses were generated with FlexX and rescored by our approach. For comparison the CScore scoring functions from Sybyl were used, and consensus scores were calculated thereof. Our approach performed better than individual scoring functions and was comparable to consensus scoring. Analysis of the distribution of docking poses by self-organizing maps (SOM) and interaction fingerprints confirmed that clusters of docking poses composed of multiple ligands were preferentially observed near the native binding mode. Being conceptually unrelated to commonly used docking scoring functions our approach provides a powerful method to complement and improve computational docking experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号