首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract— The excitation energy transfer processes in the allophycocyanin (APC) monomer and trimer from phycobilisomes of Polysiphonia urceolata were studied using picosecond time-resolved fluorescence isotropic and anisotropic spectroscopy. Based on our experimental results, conclusions could be drawn as follows: (1) After the processes of exciton localization are finished, the localized excitation energy on any chromophore can be transferred to the other chromophores due to the weak couplings between them, and the processes among three p84-phycocyaninbilin (PCB) chromophores in the center of the ring shape of the APC trimer are more important than those of between a84- and p84-PCB chromophores in the same monomer. (2) The decay time constants of 95 ± 5 ps and 40 ± 5 ps components, observed by us in this work, were assigned to the excitation energy transfer or redistribution between α84- and β84-PCB chromophores in the same monomer of the APC trimer and among three β84-PCB chromophores in the center of the ring shape of the APC trimer, respectively. Specifically, the assignment of the decay constants for the 40 ± 5 ps component was different from those of previous results. (3) Based on the model of Debreczeny, and using the fluorescence residual anisotropy r(∞) with a probing wavelength of 650 nm, the angles between the C3 symmetry axis and transition dipoles of α84- and -PCB chromophores were found to be φa84= 67° and φβ84= 148°, respectively, which are in agreement with the prediction of the X-ray crystal structure of APC. (4) The results show that anisotropy decays, observed with the APC trimer, did exhibit a strongly probing wavelength dependence that did not show up in the monomer.  相似文献   

2.
Within the framework of the Förster theory, the electronic excitation energy transfer pathways in the cyanobacteria allophycocyanin (APC) trimer and hexamer were studied. The associated physical quantities (i.e., excitation energy, oscillator strength, and transition dipole moments) of the phycocyanobilins (PCBs) located in APC were calculated at time‐dependent density functional theory (TDDFT) level of theory. To estimate the influence of protein environment on the preceding calculated physical quantities, the long‐range interactions were approximately considered with the polarizable continuum model at the TDDFT level of theory, and the short‐range interaction caused by surrounding aspartate residue of PCBs were taken into account as well. The shortest energy transfer time calculated in the framework of the Förster model at TDDFT/B3LYP/6–31+G* level of theory are about 0.10 ps in the APC trimer and about 170 ps in the APC monomer, which are in qualitative agreement with the experimental finding that a very fast lifetime of 0.43–0.44 ps in APC trimers, whereas its monomers lacked any corresponding lifetime. These results suggest that the lifetime of 0.43–0.44 ps in the APC trimers determined by Sharkov et al. was most likely attributed to the energy transfer of α1‐84 ? β3‐84 (0.23 ps), β1‐84 ? α2‐84 (0.11 ps) or β2‐84 ? α3‐84 (0.10 ps). So far, no experimental or theoretical energy transfer rates between two APC trimmers were reported, our calculations predict that the predominate energy transfer pathway between APC trimers is likely to occur from α3‐84 in one trimer to α5‐84 in an adjacent trimer with a rate of 32.51 ps. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
We have employed group theory and picosecond time-resolved fluorescence isotropy and anisotropy spectroscopy methods to explore the excitation transfers within an isolated C-phycocyanin (C-PC) hexamer (αβ)6PCL27RC, situated at the end of the rod proximal to the core of the pycobilisome (PBS) in the cyanobacterium Anabaena variabilis. The group-theory results imply that excitation energy transfer between two trimers occurs between the lowest exciton level of each trimer. The excitation energy-transfer process might occur at a rate of 10–20 ps, and it may be described by an exciton hopping-like Förster transfer mechanism. Dynamic components of 45–50 ps are assigned to the excitation transfer from β155-PCB chromophores to the exciton states of dimers, which consist of two neighbouring monomers of the same trimer in an isolated C-PC hexamer.  相似文献   

4.
C-Phycocyanin (PC) trimers associated with linker polypeptides were isolated from the phycobilisome (PBS) rods of Synechococcus sp. PCC 7002. LXY refers to a linker polypeptide (L) having an apparent mass of Y kDa, located at position X in the phycobilisome where X can be R (rod), C (core) or RC (rod-core junction). Measurements of the absorption, fluorescence and excitation anisotropy of PC trimer, PC.LR32.3 and PC.LRC28.5 complexes document the spectroscopic modulation of each linker polypeptide on the PC chromophores. The difference spectra between the PC trimer and the PC-linker complexes show that although the effect induced by the linker polypeptides is qualitatively similar in behavior, the extent of the modulation is greater in PC.LRC28.5. Measurements taken at 77 K show that a red-wavelength component of the PC trimer absorption-fluorescence spectra is the target of the linker's influence and that this component is altered to a greater extent by LRC28.5. In addition the 77 K absorbance of the PC trimer resolves band features that are consistent with an excitonic coupling interaction between neighboring alpha 84 and beta 84 chromophores. These band features are also evident in the absorbance of PC.LR32.3 but are absent in PC.LRC28.5 indicating that LRC28.5 may be perturbing the coupling interaction established in the PC trimer alpha 84-beta 84 chromophore pairs. Structurally, the linker polypeptide should disrupt the C3 symmetry in the central cavity of the associated phycobiliprotein and this asymmetric interaction should serve to guide the transfer of excitation energy along PBS rods toward the core elements.  相似文献   

5.
具有不同聚集态的藻胆蛋白有着不同的摩尔消光系数。这些聚集态决定了引起各藻胆蛋白之间光谱特性差别的藻蓝胆素发色团的构象。研究结果表明,在高聚态的C-藻蓝蛋白和变藻蓝蛋白中,由蛋白质——发色团之间相互作用调制的发色团的构象,对太阳能的吸收和激发能转移到光合反应中心的过程可能有重要作用。  相似文献   

6.
Abstract— Resonance Raman spectra of the chromophores of the cyanobacterial light-harvesting proteins phycocyanin (CPC) and allophycocyanin (APC) were recorded using 364 nm excitation. The1500–1700 cm-1 regions of these spectra were analyzed for the pH-induced structural changes accompanying the disruption of the native trimers into monomers as well as the progressive denaturation of these monomers. Computer-assisted decomposition of the 1642 cm-1 marker bands of these spectra yielded up to four components (named I-IV), the frequencies of which were constant within 5 cm-1 (CPC) and 10 cm-1 (APC). The relative intensities of two of these components, namely I and III, were sensitive to chromophore conformations. The previously reported downshift of the 1642 cm-1 band upon folding of the chromophores was shown to result from a weakening of component I and a concomitant enhancement of component III. Components I-IV had different relative intensity patterns in CPC and APC spectra. In particular, the higher relative intensity of component I at 1646 cm-1 indicated more extended average conformations of the chromophores in trimeric APC than in trimeric CPC. This difference likely resulted from the extra β-155 chromophore present in CPC. Component III was sizably active in RR spectra of monomelic APC but was not observed either in those of monomelic CPC or in those of trimeric APC and CPC. This indicated that, in APC monomers, chromophore(s) did not assume the native conformations found in the trimer, while monomer formation did not sizably alter the structures of the CPC chromophores.  相似文献   

7.
Abstract— The current work concerns investigation of the polarization properties of complex molecular ensembles exhibiting threefold (C3) rotational symmetry, particularly with regard to the interplay between their structure and dynamics of internal energy transfer. We assume that the molecules or chromophores in such complexes possess strongly overlapped spectra both for absorption and fluorescence. Such trimeric structures are widely found in biological preparations, as for example the trimer of C-phycocyanin (C-PC). Higher order aggregates, e.g. hex-amers and three-hexamer rods, are also investigated and compared with the trimer case. The theory addresses both steady-state and 8-pulse excitation and establishes some links between them. Monochromophoric, bichro-mophoric and trichromophoric molecular complexes are individually examined. For steady-state excitation, analytical formulas are reported for the degree of fluorescence polarization and absorption anisotropy. It is shown that the polarization is dependent on the chromophore inclination relative to the symmetry axis, the relative efficiencies of absorption and fluorescence by chromophores of different spectral types, and the rates of energy equilibration. To assess the validity of the theory, it has been applied to C-PC aggregates. Here it was found that different C-PC aggregates provide practically identical polarization response. For S-pulse excitation we give analytical formulas for determination of the fluorescence depolarization, and also the depolarization associated with absorption recovery, both for a monochromophoric trimer and some particular cases of bichromophoric trimer. More complicated systems are analyzed by computer modeling. Thus it transpires that the initial polarization anisotropy r(t = 0) takes the value 0.4 for all considered aggregates; the long-time limit r(t →∞) has about the same value as is associated with steady-state excitation. We also show that with steady-state excitation the degree of fluorescence polarization is practically equal for various C3 aggregates of C-PC, and that the major factor determining the polarization is the chromophore orientation relative to the symmetry axis.  相似文献   

8.
从螺旋藻藻胆体中分离出4种不同结构和光谱形式的变藻蓝蛋白复合物APⅠ、APⅡ、APⅢ和APB, 利用吸收光谱、荧光光谱比较了三聚体和单体的光谱特性, 通过对吸收光谱的光谱解曾以及各组分的归属, 研究了变藻蓝蛋白复合物内各色团间相互作用的性质和在能量传递中的功能.结果表明, 复合物内色团间的作用关系可以用Forster偶极-隅极作用机制来解释, 由于连接蛋白和同源亚基的存在影响其结构的对称性, 进而影响各色团间相互作用的形式和性质.  相似文献   

9.
Two phycoerythrocyanin (PEC) fractions have been obtained from the phycobilisomes of the cyanobac-terium Westiellopsis prolifica ARM 365. They have been characterized by absorption, fluorescence and circular dichroism spectroscopy. One of them is spectroscopically similar to a PEC trimer known from other organisms. Whereas efficient energy transfer from its violin (α-84) to the cyanin (β-84, 155) chromophores is efficient in the trimer (αβ it is impeded after dissociation to the monomer (α,β). A second fraction of PEC which we earlier termed PEC(X) (Maruthi Sai et al., Photochem. Photobiol. 55 ,119–124, 1992), exhibited the spectral properties similar to that of the α-subunit of PEC from Mastigocladus laminosus. With this highly photoactive fraction, the circular dichroism spectra of the violobilin chromophore in both photoreversible states were obtained.  相似文献   

10.
Abstract— Resonance-enhanced coherent anti-Stokes Raman spectra (CARS) are reported for monomers and for trimers with and without linker proteins of allophycocyanin isolated from Mastigocladus laminosus. The CARS spectrum of the monomer is independent of the presence of linker proteins and is very similar to that of phycocyanin monomers indicating that the equivalent chromophores exhibit like structures in both biliproteins. Large differences are, however, observed between the spectra of phycocyanin trimers and those of allophycocyanin trimers with or without linker proteins (Lc8,9). The observed differences between monomer and trimer spectra are consistent with a change of the α-chromophore-protein arrangement upon aggregation without linker. If linker proteins are present in the trimer, then additional geometry changes of the β-chromophores are induced; these could relate to a transition from the 15Z- anti to 15Z- syn conformation.  相似文献   

11.
Abstract—Energy migration has been studied in C-phycocyanin (C-PC) rods with traps located in the terminal trimer disc, using the Monte Carlo method and the system of differential equations. It has been found that jump time statistics can be described by the function F = C(t/0>)exp(-t/ < to>), where C is the constant, t and < t0 > are, respectively, the exciton jump time and its averaged value for chromophores of the corresponding spectral types (α 84 , β84 or β155). The values < t0 > were calculated for the cases of C-PC monomers, trimers and higher associates.
The C-PC model, which consists of three hexamers with traps located in the β84 chromophores of the peripheral trimer, was examined. It was found that the total efficiency of excitation capturing, øtr, exceeds 90%, provided "local" quantum yield of energy trapping ø0 > 10%. The ø0 value influences both the excitation lifetime (τ) and the mean number of excitation jumps (Niump) before its conversion. For the ø0 = 100% and 10%, the corresponding lifetimes and numbers of jumps were calculated to be τ= 75 and 155 ps and Njump= 105 and 222 jumps, respectively.
The dynamics of excitation redistribution along the C-PC rods and the fluorescence kinetics for various ø0 values were calculated for C-PC chromophores excited by a +, and the correlation between these processes and ø 0 , was disclosed. The transient processes of excitation redistribution were shown to proceed within a time period t < 30 ps.  相似文献   

12.
In the present study, the electronic energy transfer pathways in trimeric and hexameric aggregation state of cyanobacteria C‐phycocyanin (C‐PC) were investigated in term of the Förster theory. The corresponding excited states and transition dipole moments of phycocyanobilins (PCBs) located into C‐PC were examined by model chemistry in gas phase at time‐dependent density functional theory (TDDFT), configuration interaction‐singles (CIS), and Zerner's intermediate neglect of differential overlap (ZINDO) levels, respectively. Then, the long‐range pigment‐protein interactions were approximately taken into account by using polarizable continuum model (PCM) at TDDFT level to estimate the influence of protein environment on the preceding calculated physical quantities. The influence of the short‐range interaction caused by aspartate residue nearby PCBs was examined as well. Only when the protonation of PCBs and its long‐ and short‐range interactions were properly taken into account, the calculated energy transfer rates (1/K) in the framework of Förster model at TDDFT/B3LYP/6‐31+G* level were in good agreement with the experimental results of C‐PC monomer and trimer. Furthermore, the present calculated results suggested that the energy transfer pathway in C‐PC monomer is predominant from β‐155 to β‐84 (1/K = 13.4 ps), however, from α‐84 of one monomer to β‐84 (1/K = 0.3–0.4 ps) in a neighbor monomer in C‐PC trimer. In C‐PC hexamer, an additional energy flow was predicted to be from β‐155 (or α‐84) in top trimer to adjacent β‐155 (or α‐84) (1/K = 0.5–2.7 ps) in bottom trimer. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Abstract

The effects of salt concentration and pH on biliprotein self-association were examined using polyacrylamide gel electrophoresis and direct scanning gel filtration. Fractions containing different relative concentrations of C-phycocyanin, allophycocyanin, and linker proteins were prepared from Anacystis nidulans R2. Four linker proteins and three pigmented protein bands were identified by gel electrophoresis. The migration rates of biliproteins were monitored in gel filtration columns using a direct scanning system. High salt concentrations and low pH enhanced the biliprotein migration rates, consistent with an increased self association under these conditions. The increased migration rates were greater in preparations containing larger amounts of linker peptides, indicating a role for these peptides in stabilizing the biliprotein aggregates. The profiles obtained from direct column scanning suggest that a rapid equilibrium exists between monomer and hexamer of C-phycocyanin in the absence of linker proteins.  相似文献   

14.
Abstract— The excited state kinetics of trimeric C-phycocyanin from Mastigocladus laminosus has been measured as a function of the emission and excitation wavelength by the single-photon timing technique with picosecond resolution and simultaneous data analysis. A fast decay component of 22 ps (C-phycocyanin with linker peptides) and 36 ps (C-phycocyanin lacking linker peptides) is attributed to efficient energy transfer from sensitizing to fluorescing chromophores. At long detection wavelengths the fast decay components are found to turn into a rise term. This finding further corroborates the concept of intramolecular energy transfer. Previous reports on the conformational heterogeneity of the chromophores and/or proteins in C-phycocyanin are confirmed. Our data also provide indications for the importance of the uncoloured linker peptides for this heterogeneity.  相似文献   

15.
Carrier ampholyte-free isoelectric focusing was applied for pre-concentration, purification and micropreparation of phycobiliproteins (C-phycocyanin, allophycocyanin, B-phycoerythrin) extracted from cyanobacteria Anabeana doliolum and from red microalga Porphyridium cruentum. The extraction of phycobiliproteins was carried out in deionized water. The sonication in the ultrasonic bath and liquid nitrogen freeze grind was used for extraction of proteins of interest. Pre-concentrated and pre-separated proteins were collected and analyzed via MALDI-TOF-TOF mass spectrometer after their proteolytic digestion via trypsin. Based on tandem mass spectrometric analysis, the C-phycocyanin, allophycocyanin and B-phycoerythrin were identified unambiguously.  相似文献   

16.
Abstract We have investigated the model of energy transfer between sensitizing (s) and fluorescing (f) chromophores for the αβ monomer and for the separated α and β subunits of C-phycocyanin from Anabaena variabilis using fluorescence emission spectroscopy, fluorescence excitation polarization, and picosecond-resolved fluorescence decay kinetics. The fluorescence emission maximum occurs at 640 nm for all samples. The fluorescence excitation polarization is constant ( P = 0.40) across the absorption hand for the α subunit, but it increases across the absorption band towards longer wavelength for the β subunit and the αβ monomer. The fluorescence decay kinetics exhibit two exponential lifetimes of 1.3-1.5 ns and 340-500 ps for the αβ monomer and for the α and β subunit preparations.
We attribute the change in polarization across the absorption band to energy transfer among the three chromophores in the αβ monomer and among the two chromophores in the separated β subunit. The constant, relatively high polarization in the separated a subunit, having only one chromophore, is consistent with the absence of both energy transfer and chromophore rotation. The concentration of the α subunit did not affect the decay kinetics, suggesting that the short lifetime component does not arise from aggregation of the α subunits. The biexponential decay kinetics of the α subunit cannot be explained using the sensitizing-fluorescing model. The possibility of conformational interactions is under investigation.  相似文献   

17.
Resonance-enhanced coherent anti-Stokes Raman spectra are recorded for monomers and trimers of phycocyanin from three different cyanobacteria: Westiellopsis prolifica, Mastigocladus laminosus and Spirulina platensis. It is shown that upon aggregation from monomer to trimer the electronic structures of both the α84 and β84 chromophores are changed. The spectra of the trimers originating from S. platensis and M. laminosus are very similar to each other, but distinctly different from the spectrum of W. prolifica.  相似文献   

18.
Excitation energy transfer in C-phycocyanin is modeled using the Forster inductive resonance mechanism. Detailed calculations are carried out using coordinates and orientations of the chromophores derived from X-ray crystallographic studies of C-phycocyanin from two different species (Schirmer et al, J. Mol. Biol. 184 , 257–277 (1985) and ibid. , 188 , 651-677 (1986)). Spectral overlap integrals are estimated from absorption and fluorescence spectra of C-phycocyanin of Mastigocladus laminosus and its separated subunits. Calculations are carried out for the β-subunit, αβ-monomer, (αβ)3-trimer and (αβ)0-hexamer species with the following chromophore assignments: β155 = 's'(sensitizer), β84 ='f (fluorescer) and α84 ='m'(intermediate):]:. The calculations show that excitation transfer relaxation occurs to 3=98% within 200 ps in nearly every case; however, the rates increase as much as 10-fold for the higher aggregates. Comparison with experimental data on fluorescence decay and depolarization kinetics from the literature shows qualitative agreement with these calculations. We conclude that Forster transfer is sufficient to account for all of the observed fluorescence properties of C-phycocyanin in aggregation states up to the hexamer and in the absence of linker polypeptides.  相似文献   

19.
A supersonic beam is employed to produce benzene clusters (C6H6) n up ton=40. Mass analysis is achieved after two-photon ionization in a reflectron mass spectrometer. Photon energy is chosen so that the internal energy of the cluster ions is less than 700 meV and a slow decay on the µs time scale is observed. By an energy analysis with the reflecting field it is found that the elimination of one neutral benzene monomer is the favoured dissociation process of the cluster ions. Information about the dissociation pathways of the cluster ions is essential if one is to obtain neutral cluster abundances from the ion mass spectrum. Furthermore an experimental method is presented to obtain pure intermediate state (S 1←S0) spectra of selected clusters without interferences from the other clusters present in the molecular beam. This method is based on the observation of the metastable decay of the corresponding cluster ion. When the metastable signal is recorded as a function of photon energy it reflects theS 1S 0 intermediate state spectrum. Spectra are presented for the benzene dimer, trimer, tetramer and pentamer.  相似文献   

20.
The exritation energy transfer processes in monomeric phycoerythrocyanins (PEC) have been studied in detail using steady-state and time-resolved fluorescence spectra techniques as well as the deconvolution tech-nique of spectra. The results indicate that the energy transfer processes should take place between α84,-PVB and β84- or β155-PCB chromophores. the time constants of energy transfer are 34.7 and 130 ps individually; the component with lifetime of 1.57 ns originates from the fluorescence lifetime of the terminal emitter of β84- and /or β155 -PCB chro-mophores; and the component with lifetime of 515 ps might be assigned to the energy transfer between two PCB chro-mophores of β subunit. Project supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号