首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

2.
Nakano S  Sakamoto K  Takenobu A  Kawashima T 《Talanta》2002,58(6):1263-1270
A flow-injection chemiluminescent (CL) method is proposed for the successive determination of nanogram levels of vanadium(IV) and total vanadium. The method is based on the catalytic effect of vanadium(IV) on the oxidation of purpurogallin by periodate to produce light emission at 4 °C. The presence of hydrogen carbonate enhanced the light emission arising from the vanadium(IV)-catalyzed reaction. Since vanadium(V) did not catalyze the CL reaction of purpurogallin, vanadium(V) was determined after being reduced to vanadium(IV) by using an on-line silver-reducing column. Calibration curves for vanadium(IV) and (V) were linear in the range 0.1–10 ng ml−1 with sampling rate of about 50 h−1. The limit of detection for signal-to-noise ratio of 2 was 0.05 ng ml−1 and the relative standard deviations were 1.4 and 1.6% for ten determinations of 2.0 ng ml−1 vanadium(IV) and (V), respectively. Interferences from metal ions could be eliminated by the use of O,O′-bis(2-aminoethyl)ethyleneglycol- N,N,N′,N′-tetraacetic acid and diphosphate as masking agents. The proposed method was successfully applied to the determination of vanadium(IV) and total vanadium in fresh water samples.  相似文献   

3.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

4.
A catalytic flow-injection (FI) method was developed for the determination of 10−9 mol l−1 levels of vanadium(IV, V). The method is based on the catalytic effect of vanadium(V) on oxidation of N-(3-sulfopropyl)-3,3′,5,5′-tetramethylbenzidine (TMBZ·PS) using bromate as oxidant to form a yellow dye (λmax=460 nm). The use of 5-sulfosalicylic acid (SSA) as an activator enhanced the sensitivity of the method. The calibration graphs with a working range 0.05–8.0 ng ml−1 were obtained for vanadium(V). Vanadium(IV) was also determined, being oxidized by bromate. The detection limit (signal/noise, S/N=3) was 0.01 ng ml−1 (ca. 2×10−10 mol l−1) vanadium. The relative standard deviations (R.S.D.) for 15 determinations of 0.5 ng ml−1 vanadium, and for ten determinations of 0.1 and 1.0 ng ml−1 vanadium were 0.41, 2.6 and 0.25%, respectively, with a sampling rate of 15 samples h−1. The proposed method was successfully applied to the determination of vanadium in natural waters.  相似文献   

5.
Prabhakaran D  Subramanian MS 《Talanta》2003,59(6):1227-1236
A new chelating polymeric sorbent was developed by functionalizing Amberlite XAD-16 with 1,3-dimethyl-3-aminopropan-1-ol via a simple condensation mechanism. The newly developed chelating matrix offered a high resin capacity and faster sorption kinetics for the metal ions such as Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II). Various physio-chemical parameters like pH-effect, kinetics, eluant volume and flow rate, sample breakthrough volume, matrix interference effect on the metal ion sorption have been studied. The optimum pH range for the sorption of the above mentioned metal ions were 6.0–7.5, 6.0–7.0, 8.0–8.5, 7.0–7.5, 6.5–7.5, 7.5–8.5 and 6.5–7.0, respectively. The resin capacities for Mn(II), Pb(II), Ni(II), Co(II), Cu(II), Cd(II) and Zn(II) were found to be 0.62, 0.23, 0.55, 0.27, 0.46, 0.21 and 0.25 mmol g−1 of the resin, respectively. The lower limit of detection was 10 ng ml−1 for Cd(II), 40 ng ml−1 for Mn(II) and Zn(II), 32 ng ml−1 for Ni(II), 25 ng ml−1 for Cu(II) and Co(II) and 20 ng ml−1 for Pb(II). A high preconcentration value of 300 in the case of Mn(II), Co(II), Ni(II), Cu(II),Cd(II) and a value of 500 and 250 for Pb(II) and Zn(II), respectively, were achieved. A recovery of >98% was obtained for all the metal ions with 4 M HCl as eluting agent except in the case of Cu(II) where in 6 M HCl was necessary. The chelating polymer showed low sorption behavior to alkali and alkaline earth metals and also to various inorganic anionic species present in saline matrix. The method was applied for metal ion determination from water samples like seawater, well water and tap water and also from green leafy vegetable, from certified multivitamin tablets and steel samples.  相似文献   

6.
Investigation of the use of a single analytical procedure using the non-suppressed ion chromatographic method with direct spectrophotometric detection capable of determining eight oxoanions simultaneously is presented in this paper. Potassium phosphate was found to be the most suitable eluent for UV absorbance detection at 205 nm. Oxoanions AsO3−3, SeO2−3, AsO3−4, VO3, SeO2−4, WO2−4, MoO2−4 and CrO2−4 were detected at ng ml−1 levels with well separated peaks at retention time < 25 min. The working range is in the range ng ml−1 to 50 μg ml−1. The method is sufficiently sensitive to determine As (V), V(V), Mo(VI) and Cr(VI) anions (and NO3) directly in a river water sample. The accuracy of these results was established by comparison with conventional atomic absorption methods.  相似文献   

7.
Ahmed MJ  Banoo S 《Talanta》1999,48(5):711-1094
The very sensitive, fairly selective direct spectrophotometric method for the determination of trace amount of vanadium (V) with 1,5-diphenylcarbohydrazide (1,5-diphenylcarbazide) has been developed. 1,5-diphenylcarbohydrazide (DPCH) reacts in slightly acidic (0.0001–0.001 M H2SO4 or pH 4.0–5.5) 50% acetonic media with vanadium (V) to give a red–violet chelate which has an absorption maximum at 531 nm. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.23×104 l mol−1 cm−1 and 10 ng cm−2 of Vv, respectively. Linear calibration graph were obtained for 0.1–30 μg ml−1 of Vv: the stoichiometric composition of the chelate is 1:3 (V: DPCH). The reaction is instantaneous and absorbance remain stable for 48 h. The interference from over 50 cations, anions and complexing agents has been studied at 1 μg ml−1 of Vv. The method was successfully used in the determination of vanadium in several standard reference materials (alloys and steels), environmental waters (potable and polluted), biological samples (human blood and urine), soil samples, solution containing both vanadium (V) and vanadium (IV) and complex synthetic mixtures. The method has high precision and accuracy (s=±0.01 for 0.5 μg ml−1).  相似文献   

8.
Composite diazotization-coupling reagents containing sulfanilamide (SAM), sulfapyridine (SP) or sulfathiazole (ST) as the diazotizable aromatic amines and sodium 1-naphthol-4-sulfonate (NS) as the coupling agent using column preconcentration on naphthalene-tetradecyldimethylbenzylammonium(TDBA)-iodide adsorbent have been used for the spectrometric determination of trace nitrate and nitrite in soil and water samples. Nitrite ion reacts with SAM in the pH range 2.0–5.0, SP in the pH range 2.0–2.5 and ST in the pH range 2.0–3.3 in HCl medium to form water-soluble colourless diazonium cations. These cations were coupled with NS in the pH range 9.0–12.0 for the SAM system, 9.6–12.0 for the SP system and 8.5–12.0 for the ST system to be retained on naphthalene-TDBA-I material packed in a column. The solid mass is dissolved from the column with 5 ml of dimethylformamide and the absorbance is measured spectrometerically at 543 nm for SAM-NS, 533 nm for SP-NS and 535 nm for ST-NS. Nitrate is reduced to nitrite by a copper-coated cadmium reductor column and the nitrite is then treated with the diazotization-coupling reagent by column preconcentration. The absorbance due to the sum of nitrate and nitrite is measured and nitrate is determined by difference. The calibration graph was linear over the range 2–40 ng NO2-N ml−1 and 1.5–30 ng NO3-N ml−1 in aqueous samples for the SAM and ST systems and 2–48 ng NO2-N ml−1 and 1.5–36 ng NO3-N ml−1 in aqueous samples for the SP system, respectively. The sensitivity, accuracy and precision of the systems decreased in the order STSAMSP. The detection limits were 1.4 ng NO2-N ml−1 and 1.1 ng NO3-N ml−1 for SAM, 1.6 ng NO2-N ml−1 and 1.2 ng NO3-N ml−1 for SP, and 1.0 ng NO2-N ml−1 and 0.75 ng NO3-N ml−1 for ST, respectively. The preconcentration factors are 8, 5 and 6 for SAM-NS, SP-NS and ST-NS, respectively. Interferences from various foreign ions have been studied and the methods have been applied to the determination of ng ml−1 levels of nitrite and nitrate in soil and water samples. The mean recovery was 95–102% for all three systems.  相似文献   

9.
A method for the determination of silicon by inductively coupled plasma atomic emission spectrometry (ICP-AES) is described. The procedure is based on a discontinuous generation of volatile silicon tetrafluoride in concentrated sulphuric acid medium after injecting 125 μl of 0.1%, w/v sodium fluoride solution into 100 μl of the sample. The gaseous silicon tetrafluoride is fed directly into the ICP torch by a flow of 250 ml min−1 Ar carrier gas. The calibration curve was linear up to at least 100 μg ml−1 of Si(IV) and the absolute detection limit was 9.8 ng working with a solution volume of 100 μl. The relative standard deviation for six measurements of 10 μg ml−1 of Si(IV) was 2.32%. The method was applied to the determination of silicon in water and iron ores.  相似文献   

10.
A novel, sensitive and selective catalytic method for the determination of tungsten is described, based on the W(VI-catalysed redox reaction between methyl red and Ti(III) in a hydrochloric acid medium; methyl red exhibits a sensitive oscillopolarographic wave at −0.68 V vs. SCE in NaOH solution. A calibration graph from 3.2 to 72 ng ml−1 W (detection limit 1.1 ng ml−1) is obtained by the fixed-reaction time procedure. The influence of 29 foreign ions on the catalytic determination of W was examined; none interfered at < 100-fold excess. The method is used to determine W in steel and ore samples, with satisfactory results.  相似文献   

11.
A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG–AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l−1 H2SO4. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml−1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml−1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml−1 As(III) and 2.5% for 20 ng ml−1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.  相似文献   

12.
Polystyrene–divinylbenzene (8%) has been functionalised by coupling it through an ---N=N--- group with 6-mercaptopurine. The resulting chelating resin has been characterised by using elemental analysis, thermogravimetric analysis and infrared spectra. The resin is highly selective for Hg(II) and Ag(I) and has been used for preconcentrating Hg(II) and Ag(I) prior to their determination by atomic absorption spectrometry. The maximum sorption capacity for Hg(II) and Ag(I) was found to be 1.74 and 0.52 mmol g−1, respectively, over the pH range 5.5–6.0. The calibration range for Hg(II) was linear up to 10 ng ml−1 with a 3σ detection limit of 0.02 ng ml−1; the calibration range for Ag(I) was linear up to 5 μg ml−1 with a detection limit of 29 ng ml−1. The recoveries of the metals were found to be 99.7±3.8 and 101.3±4.1% at the 95% confidence level for both Hg(II) and Ag(I). In column operation, it has been observed that Hg(II) and Ag(I) in trace quantities can be selectively separated from geological, medicinal and environmental samples.  相似文献   

13.
Trace amounts of germanium can be determined by atomic spectrometry by utilizing the vaporization of germanium tetrachloride at ambient temperature. Using an intermittent or continuous flow reactor, the sample solution was mixed with concentrated hydrochloric acid to form volatile germanium tetrachloride which can subsequently be determined by atomic spectrometry. The conditions for the volatilization of germanium chloride were investigated in detail and rapid method for the determination of trace amounts of germanium in real samples was proposed. A detection limit of 0.5 ng ml−1 (3σn−1) was obtained by using atomic fluorescence spectrometric detection and the precision found was 0.8% for a germanium concentration of l00 ng ml−1. Atomic emission and absorption spectrometric methods were also tested. Owing to the high selectivity of the reaction, no interference was found in the determination. The method was applied to the determination of germanium in several standard and certified reference materials; the results obtained were in good agreement with the certified values.  相似文献   

14.
Cha KW  Park CI  Park SH 《Talanta》2000,52(6):689-989
Uranium(VI) complexed with aluminon (3-[bis(3-carboxy-4-hydroxy-phenyl)methylene]-6-oxo-1,4-cyclohexadiene-1-carboxylic acid triammonium salt) was determined by adsorptive cathodic stripping voltammetry (ACSV) using a hanging mercury drop electrode. Trace uranium(VI) and zinc(II) can be simultaneously determined in a single scan in the presence of aluminon and urea. Optimal conditions were found to be: accumulation time; 180–200 s, accumulation potential; 50 mV versus Ag/AgCl, scan rate; 40 mV s−1, supporting electrolyte; 0.1 M sodium acetate buffer at pH 6.5–7.0, and concentration of aluminon; 1×10−6 M. The linear range of uranium(VI) and zinc(II) were observed over the concentration range 2–33 and 30–120 ng ml−1, respectively. The detection limit (S/N=3) are 0.2 ng ml−1 (uranium) and 30 ng ml−1 (zinc). A good reproducibility shows RSDs of 2.5–4.0% (n=10). The procedure offers high selectivity, with the presence of urea masking some metal ions.  相似文献   

15.
In the present paper, a solid phase extraction system for separation and preconcentration of nickel (ng g−1) in saline matrices is proposed. It is based on the adsorption of nickel(II) ions onto an Amberlite XAD-2 resin loaded with 1-(2-pyridylazo)-2-naphthol (PAN) reagent. Parameters such as the pH effect on the nickel extraction, the effect of flow rate and sample volume on the extraction, the sorption capacity of the loaded resin, the nickel desorption from the resin and the analytical characteristics of the procedure were studied. The results demonstrate that nickel(II) ions, in the concentration range 0.10–275 μg l−1, and pH 6.0–11.5, contained in a sample volume of 25–250 ml, can be extracted by using 1 g Amberlite XAD-2 resin loaded with PAN reagent. The adsorbed nickel was eluted from the resin by using 5 ml 1 M hydrochloric acid solution. The extractor system has a sorption capacity of 1.87 μmol nickel per g of Amberlite XAD-2 resin loaded with PAN. The precision of the method, evaluated as the R.S.D. obtained after analyzing a series of seven replicates, was 3.9% for nickel in a concentration of 0.20 μg ml−1. The proposed procedure was used for nickel determination in alkaline salts of analytical grade and table salt, using an inductively coupled plasma atomic emission spectroscopy technique (ICP-AES). The standard addition technique was used and the recoveries obtained revealed that the proposed procedure shows good accuracy.  相似文献   

16.
This paper describes a method for the simultaneous determination of As(III), Sb(III) and Se(IV) by combining hydride generation and gas phase molecular absorption spectrometry. A system for continuous hydride generation has been designed and developed, based on the use of a double process of gas-liquid separation, and optimal compromise operation conditions for the three compounds have been found. After generation, the hydrides are collected in a liquid nitrogen cryogenic trap, and then evaporated and driven to the flow cell of a diode array spectrophotometer, in which the transient signals over the 190–250 nm wavelength interval are measured. Under the recommended conditions (sample flow: 35 ml min−1, 0.5 M HCl; reductor flow: 4 ml min−1 of 4% NaBH4, solution) linear response ranges above 50 μg 1−1 for As(III), 30 μg 1−1 for Sb(III) and 200 μg 1−1 for Se(IV) are obtained with detection limits of 22 μg 1−1, 15 μg 1−1 and 65 μg 1−1, respectively. Multiwavelength linear regression equations were used for the simultaneous determination of the three elements in different synthetic samples, with good precision and accuracy and to study simultaneously the interference from different chemical species for the three compounds. Results were similar to those obtained by other techniques using hydride generation.  相似文献   

17.
A spectrofluorimetric method to determine levofloxacin is proposed and applied to determine the substance in tablets and spiked human urine and serum. The fluorimetric method allow the determination of 20–3000 ng ml−1 of levofloxacin in aqueous solution containing acetic acid–sodium acetate buffer (pH 4) with λexc=292 and λem=494 nm, respectively. Micelle enhanced fluorescence improves the sensibility and allows levofloxacin direct measurement in spiked Human serum (5 μg ml−1) and urine (420 μg ml−1), in 8 mM sodium dodecyl sulphate solutions at pH 5.  相似文献   

18.
Ruengsitagoon W 《Talanta》2008,74(5):1236-1241
A simple reversed flow injection colourimetric procedure for determining iron(III) was proposed. It is based on the reaction between iron(III) with chlortetracycline, resulting in an intense yellow complex with a suitable absorption at 435 nm. A 200 μl chlortetracycline reagent solution was injected into the phosphate buffer stream (flow rate 2.0 ml min−1) which was then merged with iron(III) standard or sample in dilute nitric acid stream (flow rate 1.5 ml min−1). Optimum conditions for determining iron(III) were investigated by univariate method. Under the optimum conditions, a linear calibration graph was obtained over the range 0.5–20.0 μg ml−1. The detection limit (3σ) and the quantification limit (10σ) were 0.10 and 0.82 μg ml−1, respectively. The relatives standard deviation of the proposed method calculated from 12 replicate injections of 2.0 and 10.0 μg ml−1 iron(III) were 0.43 and 0.59%, respectively. The sample throughput was 60 h−1. The proposed method has been satisfactorily applied to the determination of iron(III) in natural waters.  相似文献   

19.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

20.
Chattopadhyay P 《Talanta》1995,42(12):1965-1971
Flame atomic absorption spectrometry has been used for the estimation of the alkali metal content (as Na2O and K2O) in 95 reference materials with diverse matrices (including recently introduced Polish and Chinese standard samples awaiting certification through collaborative studies) using 1000 μg ml−1 of lanthanum and 2000 μg ml−1 of rubidium as matrix buffers for sodium and potassium, respectively. The ±t (Student's values for the samples with known recommended values (degree of freedom n − 1 = 9), at the 95% and 99% confidence levels) indicate that within the confidence levels 95–99% there is no statistical difference between the data presented and the reference data for most of the samples. The agreement between the reported data and the results obtained are generally good.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号