首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
光子晶体是一种具有光子带隙的新型功能材料.利用胶体粒子自组装三维光子晶体由于其制备过程比较经济、简单,从而为很多人所关注.目前报道的方法已有多种.其中垂直排列法的简便易行使得其受到了广泛的研究,但另一方面这种方法本身的缺点也限制了它的使用范围.针对这种情况,很多研究机构提出了他们的改进方法.本文简要概述了在这一方面的最新进展,并且在本实验室已能够制备任意单分散、均一尺寸二氧化硅粒子的基础上,采用恒温快速蒸发自组装法得到了高质量的胶体晶体排列.  相似文献   

2.
We demonstrated the use of electrohydrodynamic atomization to prepare uniform-sized emulsion droplets in which equal spheres of silica or polystyrene were dispersed. The size of the emulsion droplets was easily controlled by the electric field strength and the flow rate, independently of the diameter of the nozzles. During the evaporation of solvent in the droplets, spherical colloidal crystals were formed by self-assembly of the monodisperse colloidal spheres. The diameter of the spherical colloidal crystals was in the range of 10-40 microm. Depending on the stability of colloidal particles, the morphology of the self-assembled structure was varied. In particular, silica spheres in ethanol droplets were self-assembled into compactly packed silica colloidal crystals in spherical shapes, whereas polystyrene latex spheres in toluene droplets self-assembled into spherical colloidal crystal shells with hollow cores. The silica colloidal assemblies reflected diffraction colors according to the three-dimensionally ordered arrangement of silica spheres.  相似文献   

3.
We developed a self-assembly process of silica particles to fabricate desired patterns of colloidal crystals having high feature edge acuity and high regularity. A micropattern of colloidal methanol prepared on a self-assembled monolayer in hexane was used as a mold for particle patterning, and slow dissolution of methanol into hexane caused shrinkage of molds to form micropatterns of close-packed SiO2 particle assemblies. This result is a step toward the realization ofnano/micro periodic structures for next-generation photonic devices by a self-assembly process.  相似文献   

4.
聚苯乙烯光子晶体的制备及其在传感中的应用   总被引:11,自引:3,他引:8  
谈勇  杨可靖  曹跃霞  周蓉  陈明  钱卫平 《化学学报》2004,62(20):2089-2092,F010
以基于毛细作用的垂直沉积法将单分散的二氧化硅胶体微球自组装成光子晶体.在二氧化硅光子晶体的多孔结构里填充聚苯乙烯甲苯溶液,经甲苯挥发,通过氢氟酸处理去除二氧化硅模板,制备出精美的聚苯乙烯光子晶体.研究表明:保留了模板有序多孔结构的聚苯乙烯能被用来作为敏感膜,这使得其在基于折射率变化的传感应用中具有潜在的价值.  相似文献   

5.
采用垂直沉积技术及相应的改进方法,使用化学合成的400 nm单分散二氧化硅微球自组装制备了胶体晶体薄膜。通过扫描电镜与分光光度计对样品的微观结构与透过光谱进行了表征,并对比研究了不同的垂直沉积方法对胶体晶体的影响。结果表明,通过温度与流量控制两种改进手段,均能制备具有六方密堆结构周期排列的胶体晶体薄膜。在垂直沉积过程中适当的升高温度有利于降低胶体粒子的用量,而通过流量控制的垂直沉积技术则可以有效缩短自组装时间。通过调节蠕动泵改变液面与基板的相对运动速度,或者调控温度改变胶体溶液的蒸发速率,可在材料表面形成单层或多层的胶体晶体薄膜。改进的垂直沉积技术将有望应用于快速沉积大面积、高质量的胶体晶体材料。  相似文献   

6.
This article reviews recent developments in self-assembly of polymer colloids into colloidal crystals, a good candidate material for photonic crystals. Self-assembly strategy has developed as a facile and efficient method to fabricate colloidal crystals. Much research work has been focused on controlling the morphology and improving the quality, as well as finding applications of the colloidal crystals.  相似文献   

7.
Ionic transport across tailored nanoporous anodic alumina membranes   总被引:1,自引:0,他引:1  
Monodispersed silica particles with bimodal size distribution were successfully prepared through adding an ethanol (EtOH) solution containing tetraethylorthosilicate (TEOS) dropwise into an ammonia EtOH solution at a constant low rate. The effects of the reaction parameters such as ammonia/ethanol ratio, feeding rate of TEOS solution, reaction temperature, and time on the size and size distribution of the as-obtained particles were investigated. Based on these phenomena, a modified LaMer model of nucleation and growth mechanism was proposed to reasonably explain the formation of the as-obtained silica particles with bimodal size distribution. The as-prepared monodispersed silica particles with bimodal size distribution can be directly fabricated into binary colloidal crystals with small particles surrounding large particles by evaporation-induced cooperative self-assembly. This suggests that the method reported here provides a straightforward and effective route to the in situ fabrication of novel binary colloidal crystals and their replicated patterns in one reaction system.  相似文献   

8.
In situ observations of evaporation-induced colloidal self-assembly and in situ measurement of mass transfer process were carried out under a temperature and pressure controlling system. The growth processes of colloidal crystals in different cuvettes recorded by direct video observations revealed that solvent flow around the pore space of the crystal played a key role. By changing the circumstances (temperature and pressure) of the self-assembly system and properties of fluid (viscosity), different evaporation rate of solvent and growth rate of colloidal crystals were measured directly. It turned out that both evaporation rate and growth rate as functions of temperature and pressure fit Stefan's law well. Furthermore, the transfer process of particles in the fluid flow was determined by the fluid-dynamic characteristics, which can be analyzed by the Reynolds number. The results obtained provide an insight into the growth mechanisms of self-assembly and theoretical basis for optimizing the experimental growth conditions of colloidal crystals.  相似文献   

9.
Three-dimensional photonic crystals made of close-packed polymethylmethacrylate (PMMA) spheres or air spheres in silica, titania and ceria matrices have been fabricated and characterized using SEM, XRD, Raman spectroscopy and UV–Vis transmittance measurements. The PMMA colloidal crystals (opals) were grown by self-assembly from aqueous suspensions of monodisperse PMMA spheres with diameters between 280 and 415 nm. SEM confirmed the PMMA spheres crystallized uniformly in a face-centred cubic (fcc) array, and UV–Vis measurements show that the colloidal crystals possess pseudo photonic band gaps in the visible and near-IR regions. Inverse opals were prepared by depositing silica (SiO2), titania (TiO2) or ceria (CeO2) in the voids of the PMMA colloidal crystals using sol-gel procedures, then calcining the resulting structure at 550 °C to remove the polymer template. The resulting macroporous materials showed fcc ordering of air spheres separated by thin frameworks of amorphous silica, nanocrystalline titania or nanocrystalline ceria particles, respectively. Optical measurements confirmed the photonic nature of the inverse opal arrays. UV–Vis data collected for the opals and inverse opals obeyed a modified Bragg’s law expression that considers both diffraction and refraction of light by the photonic crystal architectures. The versatility of the colloidal crystal template approach for the fabrication of macroporous oxide structures is demonstrated.  相似文献   

10.
Spherical inverse opal (IO) porous carbon was produced utilizing silica colloidal crystal spheres as templates. The spherical colloidal crystals were obtained through the self-assembly of monodisperse particles inside an emulsion droplet with confined geometry. The templates were inverted using a carbon precursor, phenol-formaldehyde (PF) resol. We demonstrated a two-step synthesis involving the subsequent infiltration of the PF resol precursor into the spherical colloidal crystal template and a one-step synthesis using a silica colloidal solution containing dissolved PF resol. In the former case, the sizes of the IO carbon balls were controlled by the size of the colloidal crystal templates, and diameters of a few micrometers up to 50 μm were obtained. The average diameter of the macropores created by the silica particles was 230 nm. Moreover, meso-/macroporous IO carbon balls were created using block-copolymer templates in the PF resol. In the one-step synthesis, the concentration of PF resol in the colloidal solution controlled the diameter of the IO carbon balls. IO balls smaller than 3 μm were obtained from the direct addition of 5% PF resol. The one-step synthesis produced rather irregular porous structures reflecting the less ordered crystallization processes inside the spherical colloidal crystals. Nitrogen adsorption and cyclic voltammetry measurements were conducted to measure the specific area and electroactive surface area of the IO carbon balls. The specific area of the mesopores-incorporated IO carbon balls was 1.3 times higher than that of bare IO carbon balls. Accordingly, the meso-/macroporous porous carbon balls exhibited higher electrocatalytic properties than the macroporous carbon balls.  相似文献   

11.
Colloidal crystal films: advances in universality and perfection   总被引:6,自引:0,他引:6  
For three-dimensional photonic crystals, made either by top-down microfabrication or by bottom-up self-assembly approaches, to comply with the stringent requirements of optical telecommunication applications, their degree of structural perfection and optical quality must meet an exceptionally high standard. Only with such superior quality photonic crystals can their unique optical properties be harnessed in optical devices and circuits constructed from micrometer-sized optical components. In this paper, we present a new strategy for making silica colloidal crystal films with a sufficiently high level of structural perfection and optical quality to make it competitive as a practical route to photonic crystal optical components. The attainment of this goal takes due cognizance of three key synergistic factors in the film formation process. The first recognizes the necessity to prepare high-quality silica spheres, which are highly monodisperse, with a polydispersity index significantly better than 2%, and the second recognizes that the population of spheres must be devoid of even the smallest fraction of substantially smaller or larger spheres or sphere doublets. The latter turns out to have a minimal effect on the polydispersity index, and yet a major detrimental effect on the overall structural order of the film. The third concerns the film-forming method itself, which necessitated the development of a novel process founded upon isothermal heating evaporation-induced self-assembly (IHEISA) of spheres on a planar substrate. This new method has several advantages over previously reported ones. It is able to deposit very high-quality silica colloidal crystal film rapidly over large areas, with a controlled thickness and without any restrictions on sphere sizes.  相似文献   

12.
This paper reports a rapid and facile method of preparing free-standing colloidal crystals from monodisperse charged polystyrene (PS) microspheres. Mixed solvents (ethanol/water) were used as the dispersion medium in the self-assembly process of colloidal crystals. By a simple "floating self-assembly" method, PS microspheres floated on the surface of liquid and self-assembled into large area of three-dimensional (3D) ordered colloidal crystals within 15 min. Then epichlorohydrin was added in as a cross-linking agent to strengthen the colloidal-crystal film. After cross-linking reactions between the microspheres, the obtained colloidal-crystal film was free-standing and could be easily transferred to other substrates. Using tetrabutyl titanate as a titania precursor, 3D porous TiO(2) materials with rodlike skeletal structure were fabricated from the prepared free-standing colloidal crystal. This work provides a facile method to fabricate free-standing colloidal-crystal film, which can be used as an ideal template for the preparation of porous materials.  相似文献   

13.
We report a simple approach to actively control the formation of the self-assembled colloidal crystals in the microfluidic networks using a combination of electrocapillary forces and evaporation-induced self-assembly. Using this scheme, we can not only selectively fabricate the colloidal crystals in the desired channels, but we can also build colloidal crystals with different optical properties in different channels or in the same channel.  相似文献   

14.
With planar photolithography and self-assembly techniques, multilayer colloidal crystals with a woodpile structure were fabricated. They represent a new kind of photonic crystals, that is, three-dimensional (3D) photonic crystals with a dual periodicity; one comes from the face-centered cubic (fcc) structure within the colloidal crystal strips and the other one results from the periodic arrangement of the colloidal crystal strips.  相似文献   

15.
Here we investigate the dynamic self-assembly pathway of ordered gold nanocrystal arrays during the self-assembly of gold nanocrystal micelles, with and without the presence of colloidal silica precursors, using grazing-incidence X-ray scattering performed at a synchrotron source. With silica precursors present, a lattice with rhombohedral symmetry is formed from the partial collapse of a face-centered cubic structure. In the absence of silica, a transient body-centered orthorhombic phase appears, which rapidly collapses into a glassy nanocrystal film. The appearance of face-centered and body-centered structures is consistent with a phase diagram for charged colloidal particles with assembly modulated via Coulomb screening.  相似文献   

16.
SiO2胶体颗粒的三维有序自组装   总被引:7,自引:0,他引:7  
由SiO2胶体颗粒的三维有序自组装可以得到面心立方三维结构,它具有折射率周期性变化的特点。它的制备涉及胶体化学、材料科学等学科的前沿领域。其自组装方法包括胶体颗粒的沉降自组装、胶体颗粒在物体限制下的自组装、胶体颗粒的连续对流自组装和利用胶体颗粒表面电性质的自组装。本文对这些组装方法进行了介绍。  相似文献   

17.
Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.  相似文献   

18.
魏苗菊  张坤  陈启明 《化学通报》2007,70(3):207-211
用原子力显微镜表征了二氧化硅胶体晶体的组装,探讨了二氧化硅微球用自然沉降法、抽滤法、溶剂挥发法组装时的组装行为,同时讨论了不同颗粒表面电位、不同溶剂介质及不同温度对其组装结果的影响。结果表明,颗粒表面电位是影响二氧化硅胶体晶体有序组装的重要因素之一。文中总结了最优的介质组成和温度条件,指出溶剂挥发法是较优的二氧化硅胶体晶体组装方法,其方法操作简单、周期短、得到的胶态晶体质量高,能在较大面积内高度有序。  相似文献   

19.
Photonic crystals are periodic structures that have the capability to manipulate the photons in the same way as semiconductors do for electrons. The self-assembly strategy that utilizes colloidal crystals as a template to form photonic crystals has received a great deal of recent research interest because it is simple and cost-effective. Experimental studies and theoretical analysis have speculated that capillary forces play a pivotal role in forming the colloidal crystals during the crystal growth process and that particularly during the drying stage the changing of the magnitude of capillary forces is critical to the resultant microstructure. This paper presents a computational analysis of the changing capillary forces, which may throw light on a refined strategy for controlling colloidal crystal growth.  相似文献   

20.
Silicon disk arrays and silicon pillar arrays with a close-packed configuration having an ordered periodicity were fabricated by the electrochemical etching of a silicon substrate through colloidal crystals used as a mask. The colloidal crystals were directly prepared by the self-assembly of polystyrene particles on a silicon substrate. The transfer of a two-dimensional hexagonal array of colloidal crystals to the silicon substrate could be achieved by the selective electrochemical etching of the exposed silicon surfaces, which were located in interspaces among adjacent particles. The diameter of the tip of the silicon pillars could be controlled easily by changing the anodization conditions, such as current density and period of electrochemical etching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号