首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

2.
The article reports on correlations between the process parameters of reactive pulsed dc magnetron sputtering, physical properties and the photocatalytic activity (PCA) of TiO2 films sputtered at substrate surface temperature Tsurf ≤ 180 °C. Films were deposited using a dual magnetron system equipped with Ti (Ø50 mm) targets in Ar + O2 atmosphere in oxide mode of sputtering. The TiO2 films with highly photoactive anatase phase were prepared without a post-deposition thermal annealing. The decomposition rate of the acid orange 7 (AO7) solution during the photoactivation of the TiO2 film with UV light was used for characterization of the film PCA. It was found that (i) the partial pressure of oxygen pO2 and the total sputtering gas pressure pT are the key deposition parameters influencing the TiO2 film phase composition that directly affects its PCA, (ii) the structure of sputtered TiO2 films varies along the growth direction from the film/substrate interface to the film surface, (iii) ∼500 nm thick anatase TiO2 films with high PCA were prepared and (iv) the structure of sputtered TiO2 films is not affected by the substrate surface temperature Tsurf when Tsurf < 180 °C. The interruption of the sputtering process and deposition in long (tens of minutes) pulses alternating with cooling pauses has no effect on the structure and the PCA of TiO2 films and results in a decrease of maximum value of Tsurf necessary for the creation of nanocrystalline nc-TiO2 film. It was demonstrated that crystalline TiO2 films with high PCA can be sputtered at Tsurf ≤ 130 °C. Based on obtained results a phase zone model of TiO2 films was developed.  相似文献   

3.
This study investigates the Mn-Ti-incorporated mesoporous silicate (Mn-Ti-MPS) as a photocatalyst for highly concentrated toluene removal in a plasma-photocatalytic hybrid system. Various Mn-Ti-MPS [Ti/Si molar ratio = 1/4, Mn/Ti molar ratio = 0.01/1 (1 mol%), 0.05/1 (5 mol%) and 0.1/1 (10 mol%)] photocatalysts were successfully synthesized using a common hydrothermal method without causing any structural damage. In the X-ray diffraction (XRD) pattern, the main peaks of the TiO2 anatase structure and MnO did not show. All samples displayed hexagonal specific peaks at 2.5° (d1 0 0 plane), 4.1° (d1 1 0 plane) and 4.7° (d2 0 0 plane). This indicates that the Ti ions and Mn ions were well substituted into the Si ion sites in the framework of MCM-41. Their surface areas decreased compared with that of pure MCM-41, while the hexagonal straight pore size was distributed in a range of 2.5-3.5 nm. In the Mn-Ti-MPS, much more water and toluene molecules were absorbed compared to the Ti-MPS. From the X-ray photoelectron spectroscopy (XPS) result, it was determined that the hydrophilicity of the Mn-Ti-MPS was stronger than that of the Ti-MPS. Photocatalytic decomposition for highly concentrated toluene of 1000 ppm increased in the Mn-Ti-MPS when compared with the Ti-MPS, while toluene decomposition on 5 mol% Mn-Ti-MPS was remarkably enhanced to 80% in the plasma system. The conversion to CO2, however, did not improve in the case of the plasma-only system. Nonetheless, in the plasma-photocatalytic hybrid system, the conversion to CO2 for 5 mol% Mn-Ti-MPS reached 43% (in an 800 ppm toluene conversion).  相似文献   

4.
W-doped TiO2 were immobilized on fiberglass cloth (FGC). The catalyst possessed small crystallite sizes with a red-shift on an absorption edge. Good dispersion was observed over the immobilized catalyst. The photocatalytic degradation of gaseous BTEX was conducted in a flow reactor under day-light fluorescent. Parameters including gas flowrate, catalyst loading, initial concentration and relative humidity (%RH) were investigated. The prepared catalysts showed higher efficiency than that of TiO2 approximately 18, 3, 3 and 2.5× for benzene, toluene, ethylbenzene and o-xylene, respectively. The condition to achieve 100% BTEX removal was found at 20 min/ml, catalyst loading 0.1 mg/cm2 and 30% RH.  相似文献   

5.
MgB2 was successfully fabricated through diffusion-controlled three-layered (B-Mg-B) technique under high pressure. Due to melting temperature of Mg, the material was pre-heat treated at 600 °C between 1 and 48 h. Optimum pre-heat treatment condition was found to be 600 °C for 48 h. Then, the compacted material was grinded and pelletized under pressure of 2 ton. The pellets were heat treated at 600-900 °C for 1-48 h. Optimum heat treatment condition was determined to be 800 °C for 1 h for formation of almost pure MgB2. Diffusion coefficient was determined with Fick's law and EDX data. Diffusion coefficient value for B in Mg matrix and Mg in B matrix was determined to be 1.66×10−7 and 3.14×10−8 cm2/sn, respectively. Best Tc value (39.4 K) was obtained for material heat treated at 800 °C for 1 h. A symmetric hysteresis was obtained for the best MgB2 material and magnetization decreased with increase in the temperature and the applied magnetic field.  相似文献   

6.
We have investigated the control of photocatalytic behavior under deposited conditions of non-sintered target of different molar ratios with TiO2 and La2O3 from 1:0 to 1:2 for heavily La doping, and post-annealing temperature from 600 °C to 1000 °C for crystallizing by pulsed laser deposition. We have successfully crystallized heavily La-doped TiO2 films with post-annealing temperature over 800 °C and with molar ratio of TiO2:La2O3 over 1:1 on a quartz substrate. Heavily La-doped TiO2 films are observed the decomposition of methylene blue and a water-splitting reaction in photocatalytic behavior under Xe light irradiation. When stoichiometric La-doped TiO2 (TiO2:La2O3 = 1: 1) is synthesized with heat-treatment at 900 °C, the best results are obtained under photocatalytic behavior and pure La2Ti2O7 crystalline were obtained.  相似文献   

7.
The specific contact resistivity and chemical intermixing of Ti/Au and Ti/Al/Pt/Au Ohmic contacts on n-type Zn0.05Cd0.95O layers grown on ZnO buffer layers on GaN/sapphire templates is reported as a function of annealing temperature in the range 200-600 °C. A minimum contact resistivity of 2.3 × 10−4 Ω cm2 was obtained at 500 °C for Ti/Al/Pt/Au and 1.6 × 10−4 Ω cm2 was obtained at 450 °C for Ti/Al. These values also correspond to the minima in transfer resistance for the contacts. The Ti/Al/Pt/Au contacts show far smoother morphologies after annealing even at 600 °C, whereas the Ti/Au contacts show a reacted appearance after 350 °C anneals. In the former case, Pt and Al outdiffusion is significant at 450 °C, whereas in the latter case the onset of Ti and Zn outdiffusion is evident at the same temperature. The improvement in contact resistance with annealing is suggested to occur through formation of TiOx phases that induce oxygen vacancies in the ZnCdO.  相似文献   

8.
We report a successful fabrication of high-Jc GdBa2Cu3O7−δ (GdBCO) films by the metal–organic deposition process on the LaAlO3 (LAO) (0 0 1) substrates. The coating solution was prepared by mixing Gd, Cu fluorine-free sources with Ba trifluoroacetate. Samples were dip-coated, pyrolized within 3 h at the temperature up to 400 °C in a humid oxygen atmosphere, and finally fired at various high temperatures in 100 ppm Ar/O2 atmosphere. The GdBCO films fired at 775 and 800 °C exhibited Jc values of ∼2.1 MA/cm2 at 77 K in a self-field, which are attributable to both high Tc,zero values of ∼89 K and high in-plane textures of 1.3–1.4°. Above 800 °C, however, the superconducting properties of GdBCO films are degraded due to the thermal decomposition of GdBCO film in 100 ppm Ar/O2 atmosphere.  相似文献   

9.
This work reports the preparation of TiO2 by decomposition of a metallo-organic precursor (MOD process) in the pores of an α-NbPO5 glass-ceramic monolith (PGC-NbP) and the study of the TiO2 anatase-rutile transition phase. The impregnation of titanium di-(propoxy)-di-(2-ethylhexanoate) in the PGC-NbP was confirmed by diffuse reflectance infrared spectroscopy. In the restrictive porous environment the decomposition of the metallo-organic compound exhibits a lower initial decomposition temperature but a higher final decomposition temperature, in comparison to the free precursor. The pure TiO2 rutile phase is formed only above 700 °C when the titanium precursor is decomposed outside the pores. The TiO2 anatase obtained inside the PGC-NbP was stabilized up to 750 °C and exhibits a smaller average crystallite size in comparison with the MOD process performed without PGC-NbP. Furthemore, the temperature of the TiO2 anatase-rutile transformation depends on crystallite size, which was provided by XRD and Raman spectroscopy. The precursor impregnation-decomposition cycle revealed a linear mass increment inside PGC-NbP. Micro-Raman spectroscopy shows the presence of a gradient concentration of the TiO2 inside the PGC-NbP. The use of the MOD process in the PGC-NbP pores has several advantages: control of the amount and the nature of the phase formed and preservation of the pore structure of PGC-NbP for subsequent treatments and reactions.  相似文献   

10.
In this paper, the effective method for nitrogen-doped TiO2−xNx photocatalyst coated on hollow glass microbeads is described, which uses titanium tetraisopropoxide [Ti(iso-OC3H7)4] as the raw materials and gaseous ammonia as a heat treatment atmosphere. The effects of heat treatment temperature and time on the photocatalytic activity of TiO2−xNx/beads are studied. The photocatalyst is characterized by the UV-vis diffuse reflection spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis and scanning electron microscopy (SEM). The results show that when the TiO2−xNx/beads is heated at 650 °C for 5 h, the photocatalytic activity of the TiO2−xNx/beads is the best. Compared with TiO2, the photoabsorption wavelength range of nitrogen-doped TiO2−xNx red shifts of about 60 nm, and the photoabsorption intensity increases as well. The photocatalytic activity of the TiO2−xNx/beads is higher than that of the TiO2/beads under visible light irradiation. The presence of nitrogen neither influences on the transformation of anatase to rutile, nor creates new crystal phases. When the TiO2−xNx/beads is heated at 650 °C for 5 h, the amount of nitrogen-doped is 0.53 wt.% in the TiO2−xNx. As the density of TiO2−xNx/beads prepared is lower than 1.0 g/cm3, it may float on water surface and use broader sunlight spectrum directly.  相似文献   

11.
An attempt has been made to prepare MgO nano-crystallites through decomposition of sol-gel derived magnesium oxalate dihydrate in air, oxygen and nitrogen ambient at 500, 600, 800, and 1000 °C for 2 h each and study them with regard to their phase, average crystallite size, morphology, and photoluminescence (PL) behaviour. They are shown to possess f.c.c. (NaCl-type) structure with lattice parameter a∼4.211 Å, average crystallite size in the range of 3.0-73.5 nm, 〈1 1 1〉 preferred orientation at decomposition temperature of 500 °C (in nitrogen and oxygen ambient), and a distorted rod-like morphology. The PL peaks observed around 395 and 440 nm have been assigned to 2T1u2A1g and 3B1u1Ag transitions associated with the relaxation of excited states of F+- and F22+-centres, respectively. Further, the emission band intensity is found to depend on decomposition temperature and gas ambient, crystallite size, and their morphology. However, in nitrogen ambient above 800 °C, several other PL peaks observed at 491.8, 501.8, 503.5, 509.3, 561.5, and 563.0 nm arise due to aggregates of F centres and/or extra energy levels created in the energy band gap by nitrogen incorporation. A mechanism for nitrogen trapping in MgO has been suggested. Further, emission intensity depends on both colour centres and surface states.  相似文献   

12.
Highly ordered titanium oxide (TiO2) nanotubes were prepared by electrolytic anodization of titanium electrodes. Morphological evolution and phase transformations of TiO2 nanotubes on a Ti substrate and that of freestanding TiO2 membranes during the calcinations process were studied by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction microscopy. The detailed results and mechanisms on the morphology and crystalline structure were presented. Our results show that a compact layer exists between the tubular layer and Ti substrate at 600 °C, and the length of the nanotubes shortens dramatically at 750 °C. The freestanding membranes have many particles on their tubes during calcinations from 450 to 900 °C. The TiO2 nanotubes on the Ti substrate transform to rutile crystals at 600 °C, while the freestanding TiO2 membranes retain an anatase crystal with increasing temperature to 800 °C. The photocatalytic activity of TiO2 nanotubes on a Ti substrate annealed at different temperatures was investigated by the degradation of methyl orange in aqueous solution under UV light irradiation. Due to the anatase crystals in the tubular layer and rutile crystals in the compact layer, TiO2 nanotubes annealed at 450 °C with pure anatase crystals have a better photocatalytic activity than those annealed at 600 °C or 750 °C.  相似文献   

13.
In this research, dye-sensitized solar cells based on TiO2 micro-pillars fabricated by inductive couple plasma etcher were investigated by analyses of X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle, ultraviolet-visible absorption spectra (UV-vis), and current-voltage characteristics. X-ray diffraction patterns show that the TiO2 anatase phase forms while sintering at 450 °C for 30 min. The SEM images reveal that the diameter and height of TiO2 micro-pillars are about 3 and 0.8 μm, respectively. The measurements of contact angle between TiO2 micro-pillars and deionized water (DI water) reveal that the TiO2 micro-pillars is super-hydrophilic while annealed at 450 °C for 30 min.The absorption spectrum of TiO2 micro-pillars is better than TiO2 thin film and can be widely improved in visible region with N3 dye adsorbed. The results of current-voltage (I-V) characteristics analysis reveal that dye-sensitized solar cell with TiO2 micro-pillars electrode has better I-V characteristics and efficiency than TiO2 film electrodes. This result may be due to the annealed TiO2 micro-pillars applied on the electrode of dye-sensitized solar cell can increase the contact area between TiO2 and dye, resulting in the enhancement of I-V characteristics and efficiency for dye-sensitized solar cell.  相似文献   

14.
Anatase phase TiO2 films have been grown on fused silica substrate by pulsed laser deposition technique at substrate temperature of 750 °C under the oxygen pressure of 5 Pa. From the transmission spectra, the optical band gap and linear refractive index of the TiO2 films were determined. The third-order optical nonlinearities of the films were measured by Z-scan method using a femtosecond laser (50 fs) at the wavelength of 800 nm. The real and imaginary parts of third-order nonlinear susceptibility χ(3) were determined to be −7.1 × 10−11esu and −4.42 × 10−12esu, respectively. The figure of merit, T, defined by T=βλ/n2, was calculated to be 0.8, which meets the requirement of all-optical switching devices. The results show that the anatase TiO2 films have great potential applications for nonlinear optical devices.  相似文献   

15.
Ca0.997Pr0.002TiO3 thin films that show strong red luminescence were successfully prepared by means of an excimer laser assisted metal organic deposition process with a KrF laser at a fluence of 100 mJ/cm2 at 100 °C. The CPTO films grew on the silica, borosilicate, and indium-tin-oxide coated glasses. The crystallinity of the Ca0.997Pr0.002TiO3 films depended on the substrates; the borosilicate and indium-tin-oxide coated glasses with a large optical absorption of a KrF laser (λ = 248 nm) were effective for the crystallization for the Ca0.997Pr0.002TiO3. In addition, a high thermal conductivity of the indium-tin-oxide coated glass substrate could also improve the crystallinity due to an enhancement of thermal propagation to the film. Oxygen annealing at 500 °C for 6 h successfully eliminated the oxygen vacancy produced by the laser irradiation, and also remarkably improved the PL emission intensity. Thus, we have shown that substrate properties such as an optical absorbance and a thermal conductivity were quite important factors for the crystal growth and the PL emission for the Ca0.997Pr0.002TiO3 in the excimer laser assisted metal organic deposition process.  相似文献   

16.
Co2Z hexaferrite Ba3Co2Fe24O41 was prepared by a mixed oxalate co-precipitation route and the standard ceramic technology. XRD studies show that at T<1300 °C different ferrite phases coexist with the M-type hexaferrite as majority phase between 1000 and 1100 °C and the Y-type ferrite at 1230 °C. The Z-type material has its stability interval between 1300 and 1350 °C. Both synthesis routes result in almost single-phase Z-type ferrites after calcination at 1330 °C, intermediate grinding and sintering at 1330 °C. The permeability of Co2Z-type ferrite of about μ=20 is stable up to several 100 MHz, with maximum losses μ′′ around 700 MHz. Addition of 3 wt% Bi2O3 as sintering aid shifts the temperature of maximum shrinkage down to 950 °C and enables sintering of Z-type ferrite powders at 950 °C. However, the permeability is reduced to μ=3. It is shown here for the first time that Co2Z ferrite is not stable under these conditions; partial thermal decomposition into other hexagonal ferrites is found by XRD studies. This is accompanied by a significant decrease of permeability. This shows that Co2Z hexagonal ferrite is not suitable for the fabrication of multilayer inductors for high-frequency applications via the low-temperature ceramic cofiring technology since the material is not compatible with the typical process cofiring temperature of 950 °C.  相似文献   

17.
Iodine-doped mesoporous TiO2 (I/TiO2) was prepared by hydrothermal method, using tetrabutyl titanate as precursor, potassium iodate as iodine sources. The as-prepared I/TiO2 catalysts were characterized by UV-vis, XRD, TEM, BET, TG/DTA, XPS and photoluminescence (PL) spectroscopy. Production of OH radicals on the I/TiO2 surface was detected by the PL technique using terephthalic acid as a probe molecule. The effects of hydrothermal reaction temperature, calcination temperature and iodine doping content on the structure and properties of the catalysts were investigated. The results showed that iodine-doped TiO2 calcinated at 300 °C have good anatase crystal. The optimal hydrothermal conditions have been determined to be that reaction temperature 120 °C, calcinated temperature 300 °C and added 1.16 mmol iodine dopants. The average particle size of I/TiO2 synthesized under optimal condition (I-3 sample) is about 3.9 nm. The I-3 photocatalyst contains 100% anatase crystalline phase of TiO2. BET specific surface area of I-3 sample is184.8 m2 g−1 and is 3.67 times that of pure TiO2 (50.37 m2 g−1). Iodine in I/TiO2 catalyst mainly exists in the form of I2, and photoactivity of I/TiO2 catalyst in visible light comes from photosensitize of I2. I/TiO2 catalysis shows very high efficiency for the degradation of phenol under visible light.  相似文献   

18.
TiO2 although considered a promising photocatalyst for the degradation of aqueous pollutants, it suffers from poor absorption in the visible region and hence requires ultraviolet (UV) light for activation. To make TiO2 a visible active photocatalyst, multielement (C, N, B, and F) doping has been done. The synthesised CNBF/TiO2 catalysts were calcined at different temperatures and characterized by XRD, BET surface area, UV DRS, XPS, HRSEM-EDAX, and TEM techniques. These catalysts found to show less band gap values when compared to bare TiO2. These catalysts were tested for their catalytic activity towards the degradation of a textile dye - congo red (CR) under different reaction conditions. It was found that the photocatalytic activity was dependent on both doping of multielement and the calcination temperature of CNBF/TiO2. The co-doped catalysts which were calcined at 400 °C and 600 °C (100% intensity in anatase phase) were found to be the best catalysts (100% decolourisation of CR in 21/2 h and 2 h respectively). TOC analysis carried out for the samples at the reaction time of 5 h showed very high percentage (83%) degradation of CR over CNBF/TiO2 catalysts calcined at 600 °C when compared to the other catalysts calcined at different temperatures. CNBF/TiO2 (1000 °C) showed very less photocatalytic activity due to the formation of rutile phase.  相似文献   

19.
Novel low density TiO-TiO2-carbon black composite was synthesized, which involved the deposition of inorganic coating on the surface of core-shell latex particles and subsequent removal of latex particles by calcination in high-purity nitrogen. The morphology and interior structure were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The images exhibited the composite had spherical shape and smooth surface, and the interior structure was hollow or porous. X-ray diffraction peaks (XRD) were mostly in agreement with the standard diffraction patterns of rutile TiO2. In addition, the observed peaks at 2θ of 43.5°, 50.6° and 74.4° can be indexed to (1 1 1), (2 0 0) and (2 2 0) planes of cubic phase TiO. The X-ray photoelectron spectroscopy (XPS) results indicated that composite consisted of carbon black, TiO and TiO2. The apparent density of the composite was suitable to 1.62 g cm−3, due to density matching with suspending media. Glutin-arabic gum microcapsules containing TiO-TiO2-carbon black composite electrophoretic liquid were prepared via complex coacervation. The particles in the microcapsules showed excellent electrophoretic mobility under a DC field.  相似文献   

20.
The diamond abrasive particles were coated with the TiO2/Al2O3 film by the sol-gel technique. Compared with the uncoated diamonds, the TiO2/Al2O3 film was excellent material for the protection of the diamonds. The results showed that the incipient oxidation temperature of the TiO2/Al2O3 film coated diamonds in air atmosphere was 775 °C, which was higher 175 °C than that of the uncoated diamonds. And the coated diamonds also had better the diamond's single particle compressive strength and the impact toughness than that of uncoated diamonds after sintering at 750 °C. For the vitrified bond grinding wheels, replacing the uncoated diamonds with the TiO2/Al2O3 film coated diamonds, the volume expansion of the grinding wheels decreased from 6.2% to 3.4%, the porosity decreased from 35.7% to 25.7%, the hardness increased from 61.2HRC to 66.5HRC and the grinding ratio of the vitrified bond grinding wheels to carbide alloy (YG8) increased from 11.5 to 19.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号