首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption properties of CO molecules adsorbed on Rh, Pd, and Ag atoms supported on various sites of the MgO surface have been studied by means of a density functional cluster model approach. The metal atoms are stabilized with different binding energies on the regular and morphological defect sites of the surface. Among others we considered oxide anions, neutral and charged anion vacancies (F centers) located at terraces, steps, edges, and corners. CO is used as a probe molecule to characterize where the metal atoms are located. This is done by analyzing how the metal-CO binding energy and the C-O stretching frequency change as function of the substrate site where the metal atom is bound.  相似文献   

2.
We have analyzed the magnetic and binding properties of Ni, Cr, Mo, and Pt metals deposited on the defect free and defect containing surfaces of MgO by means of density functional theory calculations and embedded cluster model. Clusters of moderate sizes with no border anions, to avoid artificial polarization effects, were embedded in the simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. Spin quenching occurs for Cr and Mo complexes at the defect free (terrace) surface, and Cr, Mo, and Pt complexes at the defect containing “pit” divacancy surface. The binding energies of the metals are significantly enhanced on the cationic vacancy end of the divacancy. The adsorption energies of the low spin states of spin quenched complexes are always greater than those of the high spin states. The metal-support interactions stabilize the low spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. The encountered variations in magnetic properties of free metals and of metal complexes are correlated with the energy gaps of the frontier orbitals. Spin contamination affect the adsorbate-substrate distances, Mulliken charges, Mulliken spin densities, natural charge, natural orbital population, and provide rationalization for the reported magnetic and binding properties. The electrostatic potential energy curves provide clearer understanding of the nature of magnetic and binding interactions. The magnetic and binding properties of a single metal atom adsorbed on a particular surface result from a competition between Hund's rule for the adsorbed metal, and the formation of a chemical bond at the interface.  相似文献   

3.
The adsorption of sulfur dioxide molecule (SO2) on Li atom deposited on the surfaces of metal oxide MgO (1 0 0) on both anionic and defect (Fs-center) sites located on various geometrical defects (terrace, edge and corner) has been studied using density functional theory (DFT) in combination with embedded cluster model. The adsorption energy (Eads) of SO2 molecule (S-atom down as well as O-atom down) in different positions on both of O−2 and Fs sites is considered. The spin density (SD) distribution due to the presence of Li atom is discussed. The geometrical optimizations have been done for the additive materials and MgO substrate surfaces (terrace, edge and corner). The oxygen vacancy formation energies have been evaluated for MgO substrate surfaces. The ionization potential (IP) for defect free and defect containing of the MgO surfaces has been calculated. The adsorption properties of SO2 are analyzed in terms of the Eads, the electron donation (basicity), the elongation of S-O bond length and the atomic charges on adsorbed materials. The presence of the Li atom increases the catalytic effect of the anionic O−2 site of MgO substrate surfaces (converted from physisorption to chemisorption). On the other hand, the presence of the Li atom decreases the catalytic effect of the Fs-site of MgO substrate surfaces. Generally, the SO2 molecule is strongly adsorbed (chemisorption) on the MgO substrate surfaces containing Fs-center.  相似文献   

4.
The growth and chemisorptive properties of monolayer films of Ag and Au deposited on both the Pt(111) and the stepped Pt(553) surfaces were studied using Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and low energy electron diffraction (LEED). AES studies indicate that the growth of Au on Pt(111) and Pt(553) and Ag on Pt(111) proceeds via a Stranski-Krastanov mechanism, whereas the growth of Ag on the Pt(553) surface follows a Volmer-Weber mechanism. Au dissolves into the Pt crystal bulk at temperatures > 800 K, whereas Ag desorbs at temperatures > 900 K. TDS studies of Ag-covered Pt surfaces indicate that the AgPt bond (283 kJ mol?1) is ~25 kJ mol?1 stronger than the AgAg bond (254 kJ mol?1). On the Pt(553) surface the Au atoms are uniformly distributed between terrace and step sites, but Ag preferentially segregates to the terraces. The decrease in CO adsorption on the Pt crystal surfaces is in direct proportion to the Ag or Au coverage. No CO adsorption could be detected for Ag or Au coverages above one monolayer at 300 K and 10?8 Torr. The heat of adsorption of CO on Pt is unaltered by the presence of Ag or Au.  相似文献   

5.
C. Klünker  M. Balden  S. Lehwald  W. Daum   《Surface science》1996,360(1-3):104-111
Optical sum-frequency generation (SFG) is used to characterize CO stretching vibrations on Pt(111) and Pt(110) surfaces. Different adsorption sites (terminal, bridge and step sites) are identified in the SFG spectra of CO on Pt(111), in good quantitative agreement with previous infrared reflection-absorption experiments on this system. For CO on Pt(110) we only observe CO molecules on terminal sites. The measured CO stretching vibration frequencies on Pt(110), both for low and high coverages, are at variance with the results of previous infrared studies. Our SFG results for CO on Pt(110) are confirmed by independent EELS measurements which, in addition, also reveal the frustrated rotational mode and the metal-CO vibration. The measured frequency of 2065 cm−1 for low CO coverage on Pt(110)-(1 × 2) is consistent with a previously proposed empirical relation between the frequency of an isolated adsorbed CO molecule and the coordination number of the binding Pt surface atom.  相似文献   

6.
Since the development of Scanning Tunnelling Microscopy (STM) technique, considerable attention has been devoted to various molecules adsorbed on various surfaces. Also, a new concept emerged with molecules on surfaces considered as nano machines by themselves. In this context, a thorough knowledge of surfaces and adsorbed molecules at an atomic scale are thus particularly invaluable. The present work describes the first Density Functional Theory (DFT) study of adsorption of CO, CO2 and NO molecules on a BaTiO3 surface following a first preliminary calculation of O and O2 adsorption on the same surface. In the previously considered work, we found that a (0 0 1) surface with BaO termination is more stable than the one with TiO2-termination. Consequently, we extended our study to CO, CO2 and NO molecules adsorbed on a (0 0 1) surface with BaO termination. The present calculation was performed on a (1 × 1) cell with one monolayer of adsorbed molecules. Especially, a series of cases implying CO molecules adsorbed in various geometrical configurations has been examined. The corresponding adsorption energy varies in the range of −0.17 to −0.10 eV. The adsorption energy of a CO2 molecule directly located above an O surface atom (called Os) is of the order of −0.18 eV. The O-C distance length is then 1.24 Å and the O-C-O and O-C-Os angles are 134.0° and 113.0°, respectively. For NO adsorption, the most important induced structural changes are the followings: (i) the N-O bond is broken when a NO molecule is absorbed on a Ba-Os bridge site. In that case, N and O atoms are located above an O and a Ba surface atom, respectively, whereas the O-Ba-Os and N-Os-Ba angles are 106.5° and 63.0°, respectively. The N-O distance is as large as 2.58 Å and the adsorption energy is as much as −2.28 eV. (ii) In the second stable position, the NO molecule has its N atom adsorbed above an Os atom, the N-O axis being tilted toward the Ba atom. The N-Os-Ba angle is then 41.1° while the adsorption energy is only −0.10 eV. At last, the local densities of states around C, O as well as N atoms of the considered adsorbed molecules have also been discussed.  相似文献   

7.
The reflection-adsorption technique is used to obtain the infrared spectrum of a monolayer or less of carbon monoxide adsorbed on an evaporated copper film. The band is located at 2105 cm−1 and is obtained with a signal-to-noise ratio in the range 5 to 15. In this technique, the infrared beam is multiply reflected between two closely-spaced parallel metal surfaces covered with the adsorbed layer. The CO band is used to investigate the dependence of the signal-to-noise ratio on the spacing of the metal surfaces. The existence of an optimum value of the spacing is demonstrated. The contribution to the absorption band of infrared rays with different angles of incidence is investigated and explained in terms of an optimum number of reflections and its variations with angle of incidence. After the copper surface is progressively exposed to oxygen, a slight shifting of the CO band to 2113 cm−1 is observed. Further exposure gives rise to a new band of adsorbed CO at 2135 cm−1, interpreted as CO adsorbed on copper oxide.  相似文献   

8.
E.I. Ko  R.J. Madix 《Surface science》1981,109(1):221-238
The deposit of carbon and oxygen adatoms on Mo(100) was characterized by AES and LEED. Carbon was introduced by the thermal cracking of ethylene; several ordered structures were observed as a function of coverage with carbon atoms residing on four-fold sites. The Mo(100)—O system exhibited two different sequences of LEED patterns depending on the adsorption temperature of oxygen. The effects of adsorbed carbon and oxygen on the chemisorption properties of Mo(100) was investigated by FDS. The presence of either carbon or oxygen severely hindered the ability of Mo(100) to dissociatively adsorb hydrogen or carbon monoxide. The amount of CO dissociated was directly related to the available four-fold sites on the carbide surfaces. The molecular adsorption of CO was not significantly affected by the adlayers. It was found that one monolayer of adsorbed oxygen reduced the binding energy of molecular CO considerably more than the same amount of adsorbed carbon. A continuous shift in the binding energy of CO with the C/O ratio on the surface was observed.  相似文献   

9.
Room temperature adsorption of CO on bare and carbided (111), (100) and (110) nickel surfaces has been studied by vibrational electron energy loss spectroscopy (EELS) and thermal desorption. On the clean (100) and (110) surfaces two configurations of CO adsorbed species, namely “terminal” and bridge bonded CO, are observed simultaneously. On Ni(111), only two-fold sites are involved. The presence of superficial carbon lowers markedly the bond strength of CO on Ni(111)C and Ni(110)C surfaces, while no adsorption has been detected on the Ni(100)C surface. Moreover, on the carbided Ni(110)C surface, the adsorption mode for adsorbed CO is changed with respect to the clean surface; only “terminal” CO is then observed.  相似文献   

10.
Structures of carbon monoxide layers on the oxygen-modified Mo(1 1 0) and Mo(1 1 2) surfaces have been investigated by means of density-functional (DFT) calculations. It is found that CO molecules adsorb at hollow sites on the O/Mo(1 1 0) surface and nearly atop Mo atoms on the O/Mo(1 1 2) surface. The favorable positions for adsorption are shown to be near protrusions of electron density above the Mo surface atoms. The presence of oxygen on the molybdenum surface significantly reduces the binding energy of the CO molecule with the substrate; on the oxygen-saturated Mo(1 1 0) surface, the adsorption of CO is completely blocked. The calculated local densities of states (LDOS) demonstrate that the O 2s peak for O adsorbed on Mo(1 1 0) surface is at −19 eV (with respect to the Fermi level), while for the oxygen atom of an adsorbed CO molecule the related 3σ molecular orbital gives rise to a peak at −23 eV. This difference stems from the bonding of the O atom either with Mo surface for adsorbed O or with C atom in adsorbed CO, and therefore the position of the O 2s peak in photoemission spectra can serve as a convincing argument in favor of either the presence or absence of the CO dissociation on Mo surfaces.  相似文献   

11.
本文采用基于密度泛函理论的第一性原理方法,并同时考虑范德华力的作用,计算并分析了CO在Cu(110)表面的吸附情况.结果表明:1)CO在两个表面Cu原子的短桥位位置吸附最强,吸附能为1.28 e V.第二稳定吸附位置为表面Cu原子的顶位,吸附能为1.23 e V.CO在其他两个位置,表面两个Cu的长桥位和表面四个Cu的中心位的吸附要弱一些,约为0.86 e V和0.83 e V.2)在Cu表面吸附的CO的C-O键长有部分拉长,这与较强的吸附能和电荷转移相应.3)电荷分析表明所有吸附的CO整体上从衬底上面获得部分电荷,约为0.2个电荷.  相似文献   

12.
本文采用基于密度泛函理论的第一性原理方法, 并同时考虑范德华力的作用, 计算并分析了CO在Cu(110)表面的吸附情况. 结果表明: 1) CO在两个表面Cu原子的短桥位位置吸附最强, 吸附能为1.28 eV. 第二稳定吸附位置为表面Cu原子的顶位, 吸附能为1.23 eV. CO在其他两个位置, 表面两个Cu的长桥位和表面四个Cu的中心位的吸附要弱一些, 约为0.86 eV 和 0.83 eV. 2) 在Cu表面吸附的CO的C-O键长有部分拉长, 这与较强的吸附能和电荷转移相应. 3) 电荷分析表明所有吸附的CO整体上从衬底上面获得部分电荷, 约为0.2 个电荷.  相似文献   

13.
葛桂贤  杨增强  曹海滨 《物理学报》2009,58(9):6128-6133
采用密度泛函理论对CO吸附在镍团簇表面进行了系统研究.结果表明,NinCO团簇的最低能量结构是在Nin团簇最低能量结构的基础上吸附CO生长而成,CO的吸附没有改变Nin团簇的结构;CO分子在Nin团簇表面发生的是非解离性吸附,与优化的CO键长(0.1138?nm)相比,吸附后C—O键长变长(0.1180—0.1214?nm),表明吸附后C—O键被削弱,CO分子被活化.自然键轨道分析表明,CO分子只与最近邻的Ni原子发生相互作用;CO分子与Ni原子相互作用的本质是CO分子内的杂化轨道与Ni原子3d, 4s, 4p轨道相互作用的结果. 关键词nCO团簇')" href="#">NinCO团簇 n团簇')" href="#">Nin团簇 平衡结构 电子性质  相似文献   

14.
The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01-1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques.  相似文献   

15.
采用基于密度泛函理论的第一性原理方法研究了单个CO和O2气体分子在金属原子修饰石墨烯表面的吸附和反应过程.结果表明:空位缺陷结构的石墨烯能够提高金属原子的稳定性,金属原子掺杂的石墨烯体系能够调控气体分子的吸附特性.通入混合的CO和O2作为反应气体,石墨烯表面容易被吸附性更强的O2分子占据,进而防止催化剂的CO中毒.此外,对比分析两种催化机理(Langmuir-Hinshelwood和Eley-Rideal)对CO氧化反应的影响.与其它金属原子相比,Al原子掺杂的石墨烯体系具有极低的反应势垒(0.4 e V),更有助于CO氧化反应的迅速进行.  相似文献   

16.
Mine A. Gülmen 《Surface science》2006,600(21):4909-4921
The adsorption properties of CO on Pt3Sn were investigated by utilizing quantum mechanical calculations. The (1 1 1), (1 1 0) and (0 0 1) surfaces of Pt3Sn were generated with all possible bulk terminations, and on these terminations all types of active sites were determined. The adsorption energies and the geometries of the CO molecule at those sites were found. Those results were compared with the results obtained from the adsorption of CO on similar sites of Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) surfaces. The comparison reveals that adsorption of CO is stronger on Pt surfaces; this may be the reason why catalysts with Pt3Sn phase do not suffer from CO posioning in experimental works. Aiming to understand the interactions between CO and the metal adsorption sites in detail, the local density of states (LDOS) profiles were produced for atop-Pt adsorption, both for the carbon end of CO for its adsorbed and free states, and for the Pt atom of the binding site. LDOS profiles of C of free and adsorbed CO and Pt for corresponding pure Pt surfaces, Pt(1 1 1), Pt(1 1 0) and Pt(0 0 1) were also obtained. The comparison of the LDOS profiles of Pt atoms of atop adsorption sites on the same faces of bare Pt3Sn and Pt surfaces showed the effect of alloying with Sn on the electronic properties of Pt atoms. Comparison of LDOS profiles of the C end of CO in its free and atop adsorbed states on Pt3Sn and LDOS of Pt on bare and CO adsorbed Pt3Sn surface were used to clear out the electronic changes occurred on CO and Pt upon adsorption. The study showed that (i) inclusion of a Sn atom at the adsorption site structure causes dramatic decrease in stability which limits the number of possible CO adsorption sites on Pt3Sn surface, (ii) the presence of Sn causes angles different from 180° for M-C-O orientation, (iii) the presence of Sn in the neighborhood of Pt on which CO is adsorbed causes superposition of the 5σ/1π derived-state peaks at the carbon end of CO and changes in adsorption energy of CO, (iv) Sn present beneath the adsorption site strengthens the CO adsorption, whereas neighboring Sn on the surface weakens it for all Pt3Sn surfaces tested and (v) the most stable site for CO adsorption is the atop-Pt site of the mixed atom termination of Pt3Sn(1 1 0).  相似文献   

17.
采用基于密度泛函理论的第一性原理方法研究了单个CO 和O2气体分子在金属原子修饰石墨烯表面的吸附和反应过程. 结果表明: 空位缺陷结构的石墨烯能够提高金属原子的稳定性, 金属原子掺杂的石墨烯体系能够调控气体分子的吸附特性. 通入混合的CO和O2作为反应气体, 石墨烯表面容易被吸附性更强的O2分子占据, 进而防止催化剂的CO 中毒. 此外, 对比分析两种催化机理(Langmuir-Hinshelwood和Eley-Rideal)对CO氧化反应的影响. 与其它金属原子相比, Al原子掺杂的石墨烯体系具有极低的反应势垒(< 0.4 eV), 更有助于CO氧化反应的迅速进行.  相似文献   

18.
The adsorption of CO on Pt(111) surfaces has been studied under clean conditions by a highly surface sensitive double-beam infrared reflection spectroscopy (IRS). In contrast to results of other authors two stretching vibrations of adsorbed CO rather than one are detected near 2100cm−1 and 1870cm−1. This is in agreement with recent findings in high-resolution electron energy loss spectroscopy (ELS). The results are discussed in terms of two adsorption sites: CO adsorbed in on-top positions and double coordinated on bridging sites, respectively. Furthermore, a precursor state and a preferential adsorption in islands at low coverage is taken into account.  相似文献   

19.
The Thermal Desorption or Temperature Programmed Desorption (TPD) technique has been used for the study of oxygen adsorption on Pt, Ag and Au catalyst films deposited on YSZ. The catalyst film was deposited on the one side of the YSZ specimen while on the other side gold counter and reference electrodes were deposited, constructing a three-electrode electrochemical cell similar to those used in Electrochemical Promotion studies. Oxygen adsorption has been carried out either by exposing the samples to gaseous oxygen (gas phase adsorption) or by the application of a constant current between the catalyst/working electrode and the counter electrode (electrochemical adsorption) or by mixed gas phase and electrochemical adsorption. Oxygen adsorption was carried out at temperatures between 200 and 480 °C. After exposure to gaseous oxygen, normal adsorbed atomic oxygen species have been observed on Pt and Ag surfaces while there was no detectable amount of adsorbed oxygen on Au. Electrochemical O2− pumping to Pt, Ag and Au catalyst films creates strongly bonded “backspillover” anionic oxygen, along with the more weakly bonded atomic oxygen. Electrochemical O2− pumping to Pt, Ag and Au catalyst films in presence of preadsorbed oxygen creates strongly bonded “backspillover” anionic oxygen, with a concomitant pronounced lowering of the Tp of the more weakly bound preadsorbed atomic oxygen. The two oxygen species co-exist on the surface. The activation energy for oxygen desorption or, equivalently, the binding strength of adsorbed oxygen was found to decrease linearly with increasing catalyst potential, for all three metal electrodes. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland Sept. 13–19, 1997  相似文献   

20.
The adsorption of CO on Ni was investigated by quantum chemical calculations using the CNDO/2 tight binding method. The surfaces used as models are the (111), 4(111) × (111), 3(111) × (110) and 3(111) × (100) surfaces. The CO bond is weakened in this sequence of surfaces. The active sites for the CO bond fission are the trench regions of the step and kink structures. The Ni 3d orbitals play an important role for the weakening of the CO bond, though their contribution is small for the Ni-C bond formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号