首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
B. Fu 《Applied Surface Science》2010,257(5):1500-1505
This paper addresses the in situ growth stress evolution and post-growth stress relaxation during the phase separation of immiscible Fe0.51Cu0.49 thin films at various in situ deposition temperatures. Each film was sputter-deposited onto a 10 nm Si3N4 underlayer that was grown on top of Si [0 0 1] substrate at 25 °C, 145 °C, 205 °C, 265 °C or 325 °C. The thin film stress was measured using a wafer curvature technique. The in situ growth stress increased in compression with increasing substrate temperature. The stress relaxation of the Fe0.51Cu0.49 was found to have a linear increase with the inverse grain size for films deposited at temperatures greater than 205 °C. The stress state was correlated to the films’ phase and morphology by X-ray diffraction, (scanning) transmission electron microscopy and atomic force microscopy techniques.  相似文献   

2.
Hydrogenated polycrystalline SixGe1−x films, with a varying silicon fraction x ≤ 0.246, were in situ deposited in an argon and hydrogen mixture at 500 °C using radio frequency sputtering with an aim to develop a material for the bottom cell of a low cost monolithic tandem solar cell. Silicon and germanium atomic compositions of the films were determined by X-ray photoelectron spectroscopy (XPS). Structural evolution revealed by Raman and X-ray diffraction (XRD) indicated that the crystallinity of the films was improved with decreasing silicon fraction, accompanied with an increase of surface roughness verified by atomic force microscopy (AFM). Optical band gaps of these films derived from Tauc plots, which were calculated from reflectance/transmittance measurements, decreased with decreasing silicon fraction. Resistivity of the films, determined by four-point-probe technique, significantly decreased as well. High quality with low thermal budget obtained in this work suggests the films could be used in thin film solar cells on glass.  相似文献   

3.
This work reports unexpected crystallization and segregation behavior of CuIn0.7Ga0.3Se2 (CIGS) thin films deposited on flexible Cu foils by pulsed laser deposition. A composite-type microstructure containing nanometer-scaled CIGS crystallites embedded in amorphous Cu-rich matrix is observed even at the high temperature of 500 °C. The findings are attributed to very fast condensation of the ablated species and random nucleation induced from the amorphous matrix. Cu-rich particulates tend to precipitate on the film surface, and their average size, shape, number density and composition exhibit a strong dependence on the substrate temperature up to 500 °C. The similar crystallization properties of the films on Cu foils and glass substrates are noticeable to the use of Cu foils for flexible solar cells.  相似文献   

4.
We present a review on the formation of gold silicide nanostructures using in situ temperature dependent transmission electron microscopy (TEM) measurements. Thin Au films of two thicknesses (2.0 nm and 5.0 nm) were deposited on Si (1 1 0) substrate under ultra-high vacuum (UHV) conditions in a molecular beam epitaxy (MBE) system. Also a 2.0 nm thick Au film was deposited under high vacuum condition (with the native oxide at the interface of Au and Si) using thermal evaporation. In situ TEM measurements (for planar samples) were made at various temperatures (from room temperature, RT to 950 °C). We show that, in the presence of native oxide (UHV-MBE) at the interface, high aspect ratio (≈15.0) aligned gold silicide nanorods were observed. For the films that were grown with UHV conditions, a small aspect ratio (∼1.38) nanogold silicide was observed. For 5.0 nm thick gold thin film, thicker and lesser aspect ratio silicides were observed. Selected area diffraction pattern taken at RT after the sample for the case of 5.0 nm Au on Si (1 1 0)-MBE was annealed at 475 °C show the signature of gold silicide formation.  相似文献   

5.
CdS:Cu thin films were prepared using a vacuum co-evaporation technique. The Hall measurements indicate that the conductivity characteristic of CdS thin films transformed from highly compensated in as-grown or weakly annealed materials to p-type conductive in strongly annealed materials. X-ray diffraction spectra show that as-deposited thin films were the hexagonal phase of CdS except the presence of copper for high Cu doping and the diffraction peaks of Cu disappeared after annealing. From the X-ray photoelectron spectroscopy we found the ionization of Cu atoms and the formation of an acceptor level. In situ dark conductivity in vacuum as-deposited CdS:Cu was performed in the temperature range between 27 and 250 °C. An abnormal temperature dependence of conductivity was observed in medium and heavily Cu-doped films. The formation of a p-type material at a certain temperature was also studied by the hot probe measurements, which indicates a complex compensation process in the Cu-doped CdS films.  相似文献   

6.
Nanostructured bismuth ferrite (BiFeO3) thin films were deposited on glass substrate by the sol-gel process. The as-fired film at 250 °C was found to be amorphous crystallizing to pure rhombohedral phase after annealing at 450 °C for 2 h in air. The XRD pattern shows that the sample is polycrystalline in nature. The average grain size of the film calculated from the XRD data was found to be 16 nm. The as-fired film show high transmittance that decreases after crystallization. The absorption edge of the films was found to be sharper and shifting towards the lower energy as the annealing temperature increases. The optical energy band gaps of the amorphous and crystalline films were found to be 2.63 and 2.31 eV, respectively. The refractive indices of the amorphous and crystalline films were 2.05 and 2.26, respectively.  相似文献   

7.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

8.
InGaAs layers on undoped GaAs (0 0 1) substrates were grown by atmospheric pressure metalorganic vapour phase epitaxy (AP-MOVPE). In order to obtain films with different indium composition (xIn), the growth temperature as a growth parameter, was varied from 420 to 680 °C. Furthermore, high-resolution X-ray diffraction (HRXRD) measurements were used to quantify the change of xIn. Crystal quality has been also studied as a function of growth conditions. On the other hand, laser reflectometry (LR) at 632.8 nm wavelength, was employed to in situ monitor epitaxy. Reflectivity-time signal was enabled to evaluate structural and optical properties of samples. We have fitted experimental data to determine optical constants and growth rate of InGaAs at 632.8 nm. In addition, the fitting provided InGaAs thickness as a function of growth time. Based on ex situ characterization by scanning electronic microscopy (SEM) and HRXRD, we propose a practical method, relating the contrast of first reflectivity maximum with the X-ray diffraction peak angular difference between the substrate and epitaxial layer, to determine in situ the In solid composition in InGaAs alloys.  相似文献   

9.
Strontium hexaferrite (SrFe12O19) films have been fabricated by pulsed laser deposition on Si(1 0 0) substrate with Pt(1 1 1) underlayer through in situ and post annealing heat treatments. C-axis perpendicular oriented SrFe12O19 films have been confirmed by X-ray diffraction patterns for both of the in situ heated and post annealed films. The cluster-like single domain structures are recognized by magnetic force microscopy. Higher coercivity in perpendicular direction than that for the in-plane direction shows that the films have perpendicular magnetic anisotropy. High perpendicular coercivity, around 3.8 kOe, has been achieved after post annealing at 500 °C. Higher coercivity of the post annealed SrFe12O19 films was found to be related to nanosized grain of about 50–80 nm.  相似文献   

10.
In the present paper, we investigate the effect of thermal annealing on optical and microstructural properties of HfO2 thin films (from 20 to 190 nm) obtained by plasma ion assisted deposition (PIAD). After deposition, the HfO2 films were annealed in N2 ambient for 3 h at 300, 350, 450, 500 and 750 °C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE), UV Raman and FTIR were used for the physical characterisation of the as-deposited and annealed HfO2 thin films. The results indicate that as-deposited PIAD HfO2 films are mainly amorphous and a transition to a crystalline phase occurs at a temperature higher than 450 °C depending on the layer thickness. The crystalline grains consist of cubic and monoclinic phases already classified in literature but this work provides the first evidence of amorphous-cubic phase transition at a temperature as low as 500 °C. According to SE, XRR and FTIR results, an increase in the interfacial layer thickness can be observed only for high temperature annealing. The SE results show that the amorphous phase of HfO2 (in 20 nm thick samples) has an optical bandgap of 5.51 eV. Following its transition to a crystalline phase upon annealing at 750 °C, the optical bandgap increases to 5.85 eV.  相似文献   

11.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

12.
The influence of substrate temperature on structural and dielectric properties of cubic pyrochlore Bi1.5Zn1.0Nb1.5O7 (BZN) thin films prepared by pulsed laser deposition process has been investigated. BZN thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate and in situ annealed at 700 °C. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of BZN thin films. The films exhibit a cubic pyrochlore structure in the substrate temperature range from 550 °C to 700 °C and at the annealing temperature of 700 °C. With further increase of substrate temperature to 750 °C, the phases of Bi2O3, BiNbO4 and Bi5Nb3O15 can be detected in the XRD pattern due to the Zn loss. The dielectric constant and loss tangent of the films deposited at 650 °C are 192 and 6 × 10−4 at 10 kHz, respectively. The tunability is 10% at a dc bias field of 0.9 MV/cm.  相似文献   

13.
The amorphous-to-crystalline transition of Ge/Sb2Te3 nanocomposite multilayer films with various thickness ratios of Ge to Sb2Te3 were investigated by utilizing in situ temperature-dependent film resistance measurements. The crystallization temperature and activation energy for the crystallization of the multilayer films increased with the increase in thickness ratio of Ge to Sb2Te3. The difference in sheet resistance between amorphous and crystalline states could reach as high as 104 Ω/□. The crystallization temperature and activation energy for the crystallization of Ge/Sb2Te3 nanocomposite multilayer films was proved to be larger than that of conventional Ge2Sb2Te5 film, which ensures a better data retention for phase-change random access memory (PCRAM) use. A data retention temperature for 10 years of the amorphous state [Ge (2 nm)/Sb2Te3 (3 nm)]40 film was estimated to be 165 °C. Transmission electron microscopy (TEM) images revealed that Ge/Sb2Te3 nanocomposite multilayer films had layered structures with clear interfaces.  相似文献   

14.
The effects of magnetic property dependence of the Mn1.56Co0.96Ni0.48O4 (MCN) films on crystallization are investigated in the growth temperature of 450-750 °C. With the growth temperature increase, both the crystalline quality and the grain size improve. The MCN films exhibit paramagnetic to ferromagnetic transition and the paramagnetic parts fit to the modified Curie-Weiss law. The ferromagnetic couplings of the magnetic ions in the MCN films enhance at elevated growth temperature. The saturation magnetization at 5 K increases with increasing growth temperature, but coercive field decreases monotonously. The magnetic properties of the MCN films strongly depend on their microstructures.  相似文献   

15.
Lead-free ferroelectric K0.5Na0.5NbO3 (KNN) thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition process. The structures, crystal orientations and electrical properties of thin films have been investigated as a function of deposition temperature from 680 °C to 760 °C. It is found that the deposition temperature plays an important role in the structures, crystal orientations and electrical properties of thin films. The crystallization of thin films improves with increasing deposition temperature. The thin film deposited at 760 °C exhibits strong (0 0 1) preferential orientation, large dielectric constant of 930 and the remnant polarization of 8.54 μC/cm2.  相似文献   

16.
Atomic hydrogen based etching is generally considered an efficient method for the removal of carbon films resulting from photo-induced hydrocarbon dissociation, as occurs in extreme ultraviolet (EUV) photolithography environments. The etch rate of atomic hydrogen for three different kinds of carbon films was determined, namely for EUV-induced carbon, hot filament evaporated carbon and e-beam evaporated carbon. The etching process was monitored in situ by spectroscopic ellipsometry. The etch rate was found to depend on the type of carbon (polymer or graphite-like), on the layer thickness, and on the temperature. The EUV-induced carbon shows the highest etch rate, with a value of ∼0.2 nm/min at a sample temperature of 60 °C. The more graphite-like carbon layers showed an etch rate that was about 10 times lower at this temperature. An activation energy of 0.45 eV was found for etching of the EUV-induced carbon layer.  相似文献   

17.
We have prepared SrTiO3/BaTiO3 thin films with multilayered structures deposited on indium tin oxide (ITO) coated glass by a sol-gel deposition and heating at 300-650 °C. The optical properties were obtained by UV-vis spectroscopy. The films show a high transmittance (approximately 85%) in the visible region. The optical band gap of the films is tunable in the 3.64-4.19 eV range by varying the annealing temperature. An abrupt decrease towards the bulk band gap value is observed at annealing temperatures above 600 °C. The multilayered film annealed at 650 ° C exhibited the maximum refractive index of 2.09-1.91 in the 450-750 nm wavelength range. The XRD and AFM results indicate that the films annealed above 600 ° C are substantially more crystalline than the films prepared at lower temperatures which were used to change their optical band gap and complex refractive index to an extent that depended on the annealing temperature.  相似文献   

18.
In2S3 thin films were grown on glass substrates by means of the vacuum thermal evaporation technique and subsequently thermally annealed in nitrogen and free air atmosphere from 250 to 350 °C for different durations. Experimental parameters have been adjusted in order to optimize the annealing conditions, and to obtain high band gap energy at low deposition temperature, as required for photovoltaic applications. In order to improve our understanding of the influence of the deposition and annealing parameters on device performance, we have investigated our indium sulfide material by X-ray diffraction, energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and spectrophotometry. The optical and structural properties of the films were studied as a function of the annealing temperature and durations. X-ray diffraction analysis shows the initial amorphous nature of deposited In-S thin films and the phase transition into crystalline In2S3 upon thermal annealing. Films show a good homogeneity and optical direct band gap energy about 2.2 eV. An annealing temperature of 350 °C during 60 min in air atmosphere were the optimal conditions.  相似文献   

19.
Copper oxide thin films as solar selective absorbers were conveniently prepared by one-step chemical conversion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR spectra and Fourier transform infrared (FTIR) spectra were employed to characterize the composition, structure and optical properties of thin films. The results indicated that the composition, structure and optical properties of thin films were greatly influenced by reaction temperature, time and concentration of NaOH. When reaction temperature was fixed at 40 °C, the as-prepared films consist of pure cubic Cu2O. The surface morphology of thin films was changed from square-like structure (reaction time ≤ 25 min) to porous belt-like structure (reaction time ≥ 30 min) with the elongation of reaction time. While for thin films prepared at 60 °C and 80 °C, single Cu2O was observed after 5 min reaction. When reaction time is longer than 5 min, CuO appears and the content of CuO is increasing with the elongation of reaction time. With the increase of reaction temperature, the belt-like structure was easily formed for 60 °C/10 min and 80 °C/5 min. Decreasing concentration of NaOH also could result in the formation of CuO and porous belt-like structure. Simultaneously, the film thickness is increasing with the increase of reaction time, temperature and concentration. Films containing CuO with belt-like structure exhibited high absorptance (>0.9), and the emissivity of films increased with elongation of reaction time. Combination of the composition, structure and optical properties, it can be deduced that the porous belt-like structure like as a light trap can greatly enhance absorbance (α), while the composition, thickness and roughness of thin films can greatly influence the emissivity (?). The highest photo-thermal conversion efficiency was up to 0.86 (α/? = 0.94/0.08) for thin films prepared at 80 °C/5 min, which proved that the CuOx thin films can be served as high performance solar selective absorbers.  相似文献   

20.
In the present study, we succeeded in accelerating the L10 ordering transition of FePt thin films by employing amorphous Ni-Al as underlayers. The coercivity Hc = 5 kOe and ordering parameter S = 0.67 of FePt thin films deposited on a Ni-Al underlayer with a thickness of ∼5 nm after 380 °C annealing for 30 min are significantly higher than those Hc = 0.4 kOe and S = 0.35 of the films without the Ni-Al underlayer. The L10 ordering process of and the coercivity of FePt thin films can be significantly tuned by varying the thickness of the Ni-Al underlayer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号