首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 97 毫秒
1.
In this paper, we study the issue of single quantum path control and its role in attosecond pulse generation. By carrying out the time-dependent Schrödinger equation analysis for the harmonic emission from a single He atom irradiated by the two-color laser field, consisting of a short 800 fundamental chirped pulse and a subharmonic 800–2400 nm control pulse, we find that the most favorable condition for attosecond generation is at the fundamental chirp parameter β = 4.55 together with the zero-phase 2000 nm control pulse, in which the single quantum path (short quantum path) is selected to contribute to the harmonic spectrum exhibiting an ultrabroad supercontinuum of a 337 eV bandwidth. Finally, an isolated attosecond pulse as short as 39 as is thus generated directly.  相似文献   

2.
The fluorescence emission from indole resulting from two-color two-photon (2C2P) excitation with 400 and 800 nm wavelengths is observed, using the second harmonic and fundamental wavelength of a 800 nm 40 fs pulsed Ti:Sapphire femtosecond (fs) regenerative amplifier operating at a repetition rate of 1 kHz. By delaying one fs laser pulse relative to the other, the cross correlation of fluorescence is observed, which indicates the generation of 2C2P fluorescence signal in the experiment. The strongest 2C2P fluorescence emission characterized by the peak of cross correlation curve suggests optimal temporal overlap of the two fs laser pulses. The 2C2P fluorescence signal is linearly dependent on the total excitation intensity. The fluorescence signals with 400 nm and 800 nm irradiation alone are also demonstrated and discussed in this paper.  相似文献   

3.
The dynamics of a titanium plasma species, induced in air by coupling a fs-ablating laser pulse with an orthogonal ns-reheating laser source placed at the fixed distance of 1.0 mm from the target surface, has been followed by temporally resolved emission spectroscopy. The temporal evolutions of plasma features such as excitation temperatures and electron densities have been evaluated by using two different laser energies of the first fs-ablating laser pulse (0.8 mJ and 3.0 mJ). Optimum inter-pulse delay times, experimentally determined, of 250 μs and 500 μs were used for the fs laser energy of 3.0 mJ and 0.8 mJ, respectively. By experimental inspections of the main plasma species electronic transitions so obtained, a strong enhancement was evaluated up to one and two orders of magnitude for Ti(I) and Ti(II), respectively. Independently from the fs laser energy employed, the plasma features showed the same temporal behaviour implying that the ns-reheating characteristics of this process belong to the reheating mechanism itself. The experimental results have been discussed and the excited species evolutions and elementary processes involved, as well as, the local thermodynamic equilibrium departures, have been outlined.  相似文献   

4.
The emission spectra of Lu2SiO5:Ce single crystal under the excitation of 266 nm laser were investigated. The emission spectra of LSO single crystal show no temperature quenching from 20 to 300 K, under the excitation of 266 nm laser with 2 mJ pulse energy. With rising temperature, the Ce1 emission is slightly decreased, while the Ce2 emission is slightly increased. These results show the emissions of Ce1 and Ce2 is not only dependent on the concentration ratio but also influenced by the possible energy transfer processes, including Ce1 to Ce2, intrinsic STHs to Ce2 and the phonon-assisted transfer processes. The spectral thermal broadening and the spectral overlap become evident at high temperature, leading to the enhancement of energy transfer. When the excitation power lowers, the ratio of Ce1 and Ce2 emission increases, and is close to the Xe lamp ultraviolet (UV) excitation, suggesting that the energy transfer from Ce1 center to Ce2 center may be also dependent on the excitation power.  相似文献   

5.
宋文娟  郭福明  陈基根  杨玉军 《物理学报》2018,67(3):33201-033201
通过数值求解含时薛定谔方程,研究了高频双色激光脉冲与原子相互作用产生的光辐射.研究表明,光辐射谱中既有基频光的谐波,又可观测到谐波能量附近的多个频率的光辐射产生,且辐射的峰值强度随着入射激光强度的提高呈指数增强,相邻辐射频率差值为入射的两束激光脉冲频率差.  相似文献   

6.
We report the fabrication of efficient, buried diffraction gratings and micro-craters in bulk polystyrene using femtosecond laser direct writing technique. We recorded a maximum diffraction efficiency of 10% for a buried grating fabricated at 1 μJ energy, 1 mm/s speed, and a period of 30 μm. Buried micro-craters, with typical dimensions of ∼2 μm, were achieved at low energies and high scanning speeds. From the field emission scanning electron microscope studies, the observed emission is attributed as due to the inner surface modifications and the debris settled around the voids. The fabricated gratings subjected to heat treatment were tested for the diffraction efficiency and emission at different excitation wavelengths and the observed results are presented. Raman spectra collected from the femtosecond laser modified regions revealed the disappearance of few Raman modes at high peak intensities associated with incident Gaussian laser pulse. Potential applications of these luminescent micro-craters are highlighted.  相似文献   

7.
Nanosecond (∼100 ns) pulsed (10 Hz) Nd:YAG laser operating at the wavelength (λ) of 1064 nm with pulse energies of 0.16-1.24 mJ/cm2 has irradiated 10Sm2O3·40BaO·50B2O3 glass. It is demonstrated for the first time that the structural modification resulting the large decease (∼3.5%) in the refractive index is induced by the irradiation of YAG laser with λ=1064 nm. The lines with refractive index changes are written in the deep inside of 100-1000 μm depths by scanning laser. The line width is 1-13 μm, depending on laser pulse energy and focused beam position. It is proposed that the samarium atom heat processing is a novel technique for inducing structural modification (refractive index change) in the deep interior of glass.  相似文献   

8.
Er3+-doped alkali-barium-bismuth-tellurite (LKBBT) and alkali-barium-bismuth-gallate (LKBBG) glasses with high refractive indices and low phonon energies have been designed, fabricated, characterized and compared. Intense 1.53 μm emissions with widely different widths in the two kinds of glasses were observed and recorded under 980 nm diode laser excitation. The full-widths at half-maximum of the 1.53 μm emission bands in LKBBT and LKBBG glasses are 58 and 40 nm, and the lifetimes of them were measured to be 3.21 and 3.97 ms, respectively. The quantum efficiencies for the 4I13/2 level in both glasses are almost 100%. The 1.53 μm broad and narrow emissions with high spontaneous emission probabilities and large emission cross-sections indicate that Er3+-doped LKBBT and LKBBG glasses are suitable materials in developing broadband optical amplifier and infrared laser, respectively.  相似文献   

9.
A diode-pumped Master Oscillator Power Amplifier (MOPA) laser system based on cryogenic cooled Yb:YAG has been designed, developed and its output performance characterised. The laser system consists of a fibre oscillator, an active mirror regenerative amplifier and a four pass main amplifier. 2.4 mJ, 10 ns, 100 Hz seed pulses from the fibre oscillator/regenerative amplifier arrangement were amplified up to pulse energies of over 200 mJ by using the four pass main amplifier arrangement. As a further study we have obtained an increased slope efficiency of 40% and an optical-to-optical efficiency of 30% using a pinhole vacuum spatial filter/image relay for laser mode control. With 1.8 mJ input seed pulses, output pulse energies of around 150 mJ were achieved.  相似文献   

10.
The luminescence properties of zinc oxide (ZnO) nanocrystals grown from solution are reported. The ZnO nanocrystals were characterized by scanning electron microscopy, X-ray diffraction, cathodo- and photoluminescence (PL) spectroscopy. The ZnO nanocrystals have the same regular cone form with the average sizes of 100-500 nm. Apart from the near-band-edge emission around 381 nm and a weak yellow-orange band around 560-580 nm at 300 K, the PL spectra of the as-prepared ZnO nanocrystals under high-power laser excitation also showed a strong defect-induced violet emission peak in the range of 400 nm. The violet band intensity exhibits superlinear excitation power dependence while the UV emission intensity is saturated at high excitation laser power. With temperature raising the violet peak redshifts and its intensity increases displaying unconventional negative thermal quenching behavior, whereas intensity of the UV and yellow-orange bands decreases. The origin of the observed emission bands is discussed.  相似文献   

11.
The amplitudes of terahertz pulses emitted from the surfaces of InAs, InSb, InGaAs, GaAs and Ge after their excitation by femtosecond 1 μm laser pulses was compared. It has been found that this effect is most efficient in p-type InAs. The mechanisms leading to the terahertz emission are investigated and discussed. It has been concluded that in the majority of the investigated semiconductors the main contribution to THz pulse emission comes from the electrical-field-induced optical rectification effect.  相似文献   

12.
Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 1011 W/cm2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10−9, while for the 5th-harmonic it is 10−10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ∼30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.  相似文献   

13.
We present a diode-pumped, chirped-pulse Yb:S-FAP regenerative amplifier. This regenerative amplifier was developed as a first amplifier in an all-solid-state Yb:S-FAP laser system for laser-Compton X-ray generation. The amplifier delivers pulse energies above 24 mJ at a repetition rate of 50 Hz. Pulse compression reduces pulse widths to approximately 2.0 ps.  相似文献   

14.
Undoped β-Ga2O3 single crystals were grown using the floating zone technique under a pressure of 2 atm oxygen. Luminescence spectra of the crystals were measured with steady-state X-ray (<15 keV) and UV (258 nm, 4.8 eV) sources. The X-ray excitation produced a spectrum with a peak at 390 nm (3.2 eV) whereas the UV excited spectrum had a peak at 430 nm (2.9 eV). The luminescence rise and decay were also examined by using picosecond X-ray and sub-picosecond UV pulses. It was found that the X-ray pulse excitation gave a slower rise and a faster decay of the luminescence compared with the UV pulse excitation. These results suggest that X-ray excitation generates high energy electrons, building up luminescent states until those electrons lose their kinetic energies, giving rise to the formation of local hot spots in the gallium oxide crystals.  相似文献   

15.
M. Anija 《Optics Communications》2009,282(18):3770-3774
We report spectroscopic investigations of an ultrafast laser induced plasma generated in a planar water microjet. Plasma recombination emissions along with the spectral blueshift and broadening of the pump laser pulse contribute to the total emission. The laser pulses are of 100 fs duration, and the incident intensity is around 1015 W/cm2. The dominant mechanisms leading to plasma formation are optical tunnel ionization and collisional ionization. Spectrally resolved polarization measurements show that the high frequency region of the emission is unpolarized whereas the low frequency region is polarized. Results indicate that at lower input intensities the emission arises mainly from plasma recombinations, which is accompanied by a weak blueshift of the incident laser pulse. At higher input intensities strong recombination emissions are seen, along with a broadening and asymmetric spectral blueshift of the pump laser pulse. From the nature of the blueshifted laser pulse it is possible to deduce whether the rate of change of free electron density is a constant or variable within the pulse lifetime. Two input laser intensity regimes, in which collisional and tunnel ionizations are dominant respectively, have been thus identified.  相似文献   

16.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

17.
A semiclassical dynamics simulation study is reported for the ring opening reaction of 1,3-cyclohexadiene (CHD) triggered by a femtosecond-scale laser pulse. The results clearly demonstrate that, following the excitation by the laser pulse, the ring opening occurs at ∼110 fs and the molecule decays to the ground electronic state at ∼210 fs due to non-adiabatic transition of electrons from LUMO to HOMO orbitals. Isomerization of the product of the ring opening reaction, 1,3,5-hexatriene (HT), to various stable isomers are also well demonstrated by the simulations.  相似文献   

18.
Lattice dynamics and radiative processes in single-crystal cadmium sulfide induced by two-photon excitation with a femtosecond laser are investigated. The development of lattice expansion is directly observed by picosecond time-resolved X-ray diffraction. The obtained lattice dynamics are explained on the basis of a thermally induced impulsive-strain model. The model calculation indicates that two- and more-photon absorption processes occur and that reflectivity rapidly increases under laser irradiation. In photoluminescence spectroscopy, the spectra for TW cm−2 excitation are shifted to lower energy and show an additional shoulder at 2.35 eV. Furthermore, emission due to Fabry-Perot laser modes with self-formed cavities was observed under 11 TW cm−2 excitation. The discrepancy between carrier densities deduced from the lattice expansion and the PL spectra indicates that the predominant process at a higher carrier density is not radiative recombination, but Auger recombination followed by lattice heating.  相似文献   

19.
Stimulated emission at terahertz frequencies has been obtained from multi-crystalline silicon doped by phosphor under optical excitation by a mid-infrared laser. The silicon samples consist of grains with a characteristic size distribution in the range from 50 to 500 μm. The maximum operation temperature of the laser made from multi-crystalline silicon is 6 K less than that of monocrystalline lasers and the maximum output power is three times less while its laser threshold is only slightly higher and the emission frequency is the same. These effects are attributed to internal strain and enhanced phonon scattering induced by grain boundaries.  相似文献   

20.
A detailed investigation of aluminum plasma induced by a 1064 nm Nd:YAG laser in air was performed. The emission of spectral lines arising from Al I transition at 396.07 nm, Al II transition at 358.46 nm, Al III transition at 360.72 nm and Al IV transition at 363.05 nm were well-resolved. The plasma parameters including electron temperature and electron density were determined through the Boltzmann plot method using the emission line intensities of the same ionized stages of aluminum atoms and the Stark-broadening profiles of Al II emission line, respectively. The temporal evolutions of the spectral lines belonging to atomic and ionic aluminum elements and the plasma parameters were investigated at three different laser pulse energies. Moreover, the validity of local thermodynamic equilibrium was elucidated in our experimental condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号