首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface oxidation ranging from initial stages to the onset of passive oxide layer formation have been investigated on Fe–20Cr–18Ni{1 1 1} single crystal surface by X-ray photoelectron spectroscopy (XPS). Surface segregation of the alloying elements and the morphology of the surface oxide nanostructure were characterized quantitatively by inelastic electron background analysis. Our results demonstrate that by increasing the oxidation temperature the relative concentrations of Fe2+ and Fe3+ cations increase due to their enhanced mobility. Higher temperature also improves the mobility of chromium, thus enhancing its segregation to the oxygen-rich surface and thereby reinforcing the passive layer on the alloy. This is in agreement with the results showing the sudden decrease in oxide film thickness at the oxidation temperatures exceeding 600 K. Additionally, a pronounced segregation of metallic nickel is found in the interface between the surface oxide layer and the bulk alloy.  相似文献   

2.
Thermal silicon oxide layers have been implanted at 600 °C with N++C+, N++B+ and N++C++B+ ions. Two different implantation doses have been chosen in order to introduce peak concentrations at the projected range comparable to the SiO2 density. Some pieces of the samples have been annealed in conventional furnace at 1200 °C for 3 h. After annealing, cathodoluminescence measurements show in all cases a main broad band centered at 460 nm (2.7 eV). High doses of C implantation give rise to an intensity attenuation. Phases formed in the oxides have been investigated by Fourier transform infrared spectroscopy before and after annealing. The spectra suggest that N incorporates as BN and probably as a ternary BCN phase in the triply implanted samples, while C seems to bond mainly with B. Boron is also bonded to O in B-O-Si configuration. Depth structure and quantitative composition of the films were deduced from fittings of the spectroscopic ellipsometry measurements.  相似文献   

3.
Li2O-CaF2-P2O5 glasses mixed with different concentrations of Cr2O3 (ranging from 0 to 1.0 mol%) were crystallized. The samples were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy (EDS), differential thermal analysis and conventional spectroscopic techniques. The X-ray diffraction and scanning electron microscopic studies reveal the presence of lithium phosphate, calcium phosphate and chromium phosphate (complexes of Cr3+, Cr5+ and Cr6+ ions) crystal phases. The study on DTA suggests that the crystallization is predominantly due to the surface crystallization when the concentration of nucleating agent Cr2O3 is around 0.8 mol%. The IR and Raman spectral studies of these samples indicate that the sample crystallized with 0.8 mol% Cr2O3 is more compact and possesses high rigidity due to the presence of chromium ions largely in tetrahedral positions.  相似文献   

4.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

5.
In this work, silicon nanocrystals (Si-nc) embedded in a silicon-rich silicon oxide (SRSO) matrix doped with Er3+ ions for different erbium and silicon concentrations have been deposited by electron-cyclotron resonance plasma-enhanced chemical-vapor-deposition (ECR-PECVD) technique. Their optical properties have been investigated by photoluminescence (PL) and reflectance spectroscopy.Room temperature emission bands centered at ∼1.54 and at 0.75 μm have been obtained for all samples. The most intense emission band at ∼1.54 μm was obtained for samples with concentrations of 0.45% and 39% for erbium and silicon, respectively. Moreover, it has been found that the broad emission band centered at ∼0.75 μm for all samples shows a very strong interference pattern related to the a specific sample structure and a high sample quality.  相似文献   

6.
Auger electron spectroscopy depth profiling was applied to characterize the Fe-oxide layers prepared by low temperature oxidation of Fe electromagnetic sheets produced on an industrial line for applications in the field of electrical motors. In addition the surface morphology, layer composition and layer structure were analysed by electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction techniques. We found that the oxide layers on Fe-sheets with good adhesion between the oxide layer and Fe-substrate, consist mainly of magnetite and to a smaller extent of haematite; the layers are typically thinner than 1 μm and the interface between the oxide layer and the Fe-substrate is relatively broad, i.e. up to 0.3 μm. On the contrary, a decrease of adhesion between the oxide layer and the Fe-substrate was found when the layer is thicker than 1 μm and the layer/substrate interface is narrow and contaminated by foreign elements.  相似文献   

7.
The application of the striking electrical and optical properties of amorphous and nano-crystalline silicon in photovoltaic, photonic and nano-electronic devices is attracting increasing attention. In particular, its use both on polymeric substrates and in Integrated Circuit technology for the development of enhanced new devices has shown that processing techniques to produce amorphous hydrogenated and nano-crystalline silicon films avoiding high substrate temperatures are of great importance. A promising strategy to achieve this purpose is the combination of Hot-Wire Chemical Vapor Deposition at 150 °C with Excimer Laser Annealing, thus maintaining the substrate at relatively low temperature during the complete process.In this work we present a numerical analysis of Excimer Laser Annealing, performed at room temperature, of a multilayer structure of thin alternating a-Si:H and nc-Si films deposited on glass and grown by Hot-Wire Chemical Vapor Deposition. A set of two different layer thicknesses a-Si:H (25 nm)/nc-Si (100 nm) and a-Si:H (30 nm)/nc-Si (60 nm) were analysed for a total structure dimension of 900 nm. The aim is to determine the probable temperature profile to achieve controlled localized in depth dehydrogenation.Temperature distribution has been calculated inside the multilayer during the irradiation by a 193 nm Excimer laser, 20 ns pulse length, with energy densities ranging from 50 to 300 mJ/cm2. Calculations allowed us to estimate the dehydrogenation effect in the different layers as well as the structural modifications of the same layers as a function of the applied laser energy.The numerical results have been compared to the experimental ones obtained in similar multilayer structures that have been analysed through Raman spectroscopy and TOF-SIMS in depth profiling mode.  相似文献   

8.
Glass samples of the system, Li2O-MgO-B2O3 containing different concentrations of nickel oxide (ranging from 0 to 1.0 mol%) were prepared by using the melt quenching technique. The optical absorption studies indicate that the nickel ions occupy both tetrahedral and octahedral positions in the glass network. However, the octahedral positions seem to be dominant when the concentration of nickel oxide is ?0.4 mol% in the glass matrix. When in the octahedral positions, nickel ions occupy the network modifying positions. This has a tremendous effect on the thermoluminescence, electrical conductivity and magnetic susceptibility studies. Electrical measurements were carried out as a function of frequency and temperature over the frequency range of 10-106 Hz and a temperature range of 303-523 K. The electric modulus formalism was applied to study the relaxation behavior by using the impedance data for all the samples at 403 K, and also for analyzing the relaxation behavior of the highest conducting sample (0.4 mol% of nickel oxide) at different temperatures. An attempt has been made to relate the measured properties to the structural modifications in the glass network due to the modifying effect of octahedral Ni2+ ions.  相似文献   

9.
Fe/graphite oxide nanocomposites were prepared by inserting Fe3+ into layers of graphite oxide and then reducing Fe3+/graphite oxide compound at different reduced reaction temperatures in H2. The composition, crystal structure, magnetic and microwave absorption properties of Fe/graphite oxide nanocomposites were investigated using elemental analysis, transmission electron microscope (TEM), X-ray diffraction (XRD), magnetic hysteresis curve and electromagnetic parameter analysis. The results show that the densities of samples are 2.43–2.47 g/cm3 and the nanocomposites are soft magnetic materials. The optimum reduced reaction temperature for preparing Fe/graphite oxide nanocomposites is 600 °C. With the increase of the thickness of the sample, the matching frequency tends to shift to the lower frequency region, and theoretical reflection loss becomes less at the matching frequency. Microwave absorption property of Fe/graphite oxide nanocomposites prepared at 600  °C (FeGO600) is the best. When the thickness is 1 mm, the maximum theoretical reflection loss of FeGO600 is −9 dB and the frequency region in which the maximum reflection loss is more than −6.0 dB is 11–18 GHz. In conclusion, FeGO600 is a good candidate for microwave absorbent due to its low density, wide frequency region for microwave absorption and large reflection loss.  相似文献   

10.
AZ31 samples were implanted with yttrium ions with fluences of 5 × 1016, 1 × 1017 and 5 × 1017 ions/cm2, using a metal vapor vacuum arc source at an extraction voltage of 45 kV. The surfaces of the implanted samples were then analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). It was found that after treatment a pre-oxidation layer was formed, and the higher the fluence, the thicker the pre-oxidation layer was. The valence states showed that yttrium existed in the form of Y2O3. Isothermal oxidation tests have been conducted in pure oxygen at 773 K for 90 min to evaluate the oxidation behavior of the implanted samples. The results indicate that after implantation the oxidation resistance of the samples was significantly improved. Moreover, the greater the fluence, the better the oxidation resistance has been achieved. The characterization of the implanted layers after isothermal oxidation was examined by SEM, AES and XPS. From the results, it can be found that the thickness of the oxide scale formed on the implanted surfaces have been greatly decreased, and there is no obvious change for both the thickness of the pre-oxidation layer and the valence states of the elements after oxidation.  相似文献   

11.
The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 ≤ T ≤ 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.  相似文献   

12.
R.S. Dubey  D.K. Gautam 《Optik》2011,122(6):494-497
In this paper, we studied the optical and physical properties of electrochemically prepared porous silicon layers. The atomic force microscopy analysis showed that the etching depth, pore diameter and surface roughness increase as the etching time increased from 30 to 50 mA/cm2. By tuning two current densities J1 = 50 mA/cm2 and J2 = 30 mA/cm2, two samples of 1D porous silicon photonic crystals were fabricated. The layered structure of 1D photonic crystals has been confirmed by scanning electron microscopy measurement which showed white and black strips of two distinct refractive index layers. Finally, the measured reflectance spectra of 1D porous silicon photonic crystals were compared with simulated results.  相似文献   

13.
Anodic layer growth on 2024 aluminium alloy at 70 °C, under 40 V, during 60 min, in 50 g L−1 di-sodium tetraborate solution containing di-sodium molybdate from 0.1 to 0.5 M (pH 10) is examined. Anodising behaviours strongly depend on additive concentration. Development of anodic films is favoured with weak molybdate additions (<0.3-0.4 M). The film thicknesses increase and the porosity of anodic layers decreases. Molybdenum (+VI), detected by X-ray photoelectron spectroscopy (XPS) analysis, is present in the anodic films and the Mo incorporation, studied by energy dispersive spectroscopy (EDS) analysis, increases with molybdate concentration. However, for high molybdate concentrations (>0.4 M), anodising behaviour becomes complex with the formation of a blue molybdenum oxide at the cathode. The growth of aluminium oxide is hindered. As the anodic layers are thinner, the Mo(+VI) incorporation significantly decreases. These two configurations implicate different corrosion performances in 5% sodium chloride solution at 35 °C. As the alkaline anodic layer formed with 0.3 M molybdate species is the thickest and the Mo incorporation is the more pronounced, its corrosion resistance is the highest. The effect of morphology and composition of anodic films on pitting corrosion is also discussed.  相似文献   

14.
Ge (1 0 0) wafers were implanted with 100 keV Mn+ ions with a dose of 2 × 1016 ions/cm2 at different temperatures, ranging from 300 to 573 K. The surface morphology of implanted samples, analyzed with scanning electron microscopy and atomic force microscopy measurements, reveals for the 300-463 K implant temperature range the formation of a surface swelled and porous film, containing sponge-like structures. On the contrary, samples implanted in the 513-573 K temperature range present an atomically flat surface, with a roughness less than 1 nm, indicating that crystalline order has been preserved. X-ray photoemission spectroscopy depth profiling measurements indicate the presence of adsorbed oxygen in the porous layer of lower-temperature implanted samples, as well the presence of a large Mn concentration below the expected end of range for impinging ions. Mn and O concentrations at anomalously great depths are maximum in the 413 K implanted sample, indicating that the phenomenon of ion beam induced porosity is best favored at a well defined temperature.  相似文献   

15.
Chemical dissolution of the barrier layer of porous oxide formed on thin aluminum films (99.9% purity) in the 4% oxalic acid after immersion in 2 mol dm−3 sulphuric acid at 50 °C has been studied. The barrier layer thickness before and after dissolution was calculated using a re-anodizing technique. It has been shown that above 57 V the change in the growth mechanism of porous alumina films takes place. As a result, the change in the amount of regions in the barrier oxide with different dissolution rates is observed. The barrier oxide contains two layers at 50 V: the outer layer with the highest dissolution rate and the inner layer with a low dissolution rate. Above 60 V the barrier oxide contains three layers: the outer layer with a high dissolution rate, the middle layer with the highest dissolution rate and the inner layer with a low dissolution rate. We suggest that the formation of the outer layer of barrier oxide with a high dissolution rate is linked with the injection of protons or H3O+ ions from the electrolyte into the oxide film at the anodizing voltages above 57 V.  相似文献   

16.
Nickel oxide thin films were deposited on fused silica and Si(1 0 0) substrates at different substrate temperatures ranging from room temperature to 400 °C using radio frequency reactive magnetron sputtering from a Ni metal target in a mixture of O2 and Ar. With the increase of substrate temperature, nickel oxide films deposited on the Si substrates exhibit transition from amorphous to poly-crystalline structures with different preferred orientations of NiO(2 0 0) and (1 1 1). The films deposited at higher temperature exhibit higher Ni2+/Ni3+ ratio. With substrate temperature increasing from room temperature to 400 °C, the electrical resistivities of nickel oxide films increase from (2.8 ± 0.1) × 10−2 to (8.7 ± 0.1) Ω cm, and the optical band-gap energies increase from 3.65 to 3.88 eV. A p-nickel oxide/n-zinc oxide heterojunction was fabricated to confirm the p-type conduction of nickel oxide thin film, which exhibited a steadily rectifying behavior.  相似文献   

17.
The deposition of amorphous indium zinc oxide (IZO) thin films on glass substrates with n-type carrier concentrations between 1014 and 3 × 1020 cm−3 by sputtering from single targets near room temperature was investigated as a function of power and process pressure. The resistivity of the films with In/Zn of ∼0.7 could be controlled between 5 × 10−3 and 104 Ω cm by varying the power during deposition. The corresponding electron mobilities were 4-18 cm2 V−1 s−1.The surface root-mean-square roughness was <1 nm under all conditions for film thicknesses of 200 nm. Thin film transistors with 1 μm gate length were fabricated on these IZO layers, showing enhancement mode operation with good pitch-off characteristics, threshold voltage 2.5 V and a maximum transconductance of 6 mS/mm. These films look promising for transparent thin film transistor applications.  相似文献   

18.
Cr/SiO2 catalysts with 1 or 3 wt.% Cr loadings and different chromium precursors were characterized by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). A method to determine chromium species in the sample was developed through the decomposition of the Cr 2p XPS spectrum in Cr6+ and Cr3+ standard spectra. The results of the binding energy from the Cr 2p region and of the distribution of chromium species allowed to evaluate the dynamic photo-reduction of the surface chromium species during XPS analysis. Photo-reduction of surface Cr6+ to Cr3+ species was verified for all samples supported in silica, depending on the precursor and chromium content. Bulk CrO3 and Cr2O3 standards did not reveal variation in the binding energy of Cr 2p3/2, but a physical mixture of CrO3 with SiO2 presented photo-reduction. The behavior of this mixture resembled to the catalysts and suggests the participation of the surface hydroxyls of silica in the photo-reduction process. XPS intensity measurements for assessing dispersion of chromium oxide were used to compare the calcined and reduced catalysts to different chromium precursors. Polyethylene chains were detected by in situ XPS, while oligomerization products were not observed.  相似文献   

19.
Doppler broadening spectroscopy (DBS) coupled to a slow positron beam has been used to investigate the formation of He-cavities in the presence of high vacancy concentrations in Cz-Si (1 1 1). Si samples were first implanted with MeV Si ions in order to create a damaged Si layer. DBS measurements show the presence of divacancy (SV2/SSilattice=1.052,WV2/WSilattice=0.83) from the surface up to 4.2 μm depth with a concentration higher than 1018 cm−3. The thickness of this damaged layer was confirmed by spreading resistance measurements. In the second step, samples were implanted with 50 keV 3He with fluence of 1016 cm−2. DBS results show that the apparent divancancy concentration decreases at 3He implantation depth ∼435 nm due to 3He passivation of vacancies that occurs during the implantation process. After 900 °C annealing, large defects are detected at depth up to 2 μm and (S, W) values suggest the detection of cavities at the implantation depth. We also report the possible presence of impurity complexes. The formation of these complexes is attributed to the gettering of metallic impurities present in the Si sample.  相似文献   

20.
A new coating system of under layer for hot dip zinc coating was explored as an effective coating for steel especially for application in relatively high aggressive environments. The influence of different barrier layers formed prior to hot dip galvanization was investigated to optimize high performance protective galvanic coatings. The deposition of ZnO and Ni-P inner layers and characteristics of hotdip zinc coatings were explored in this study. The coating morphology was characterized by scanning electron microscope (SEM) analysis. The hot dip zinc coatings containing under layer showed substantial improvement in their properties such as good adhesion, and high hardness. In addition, a decrease in the thickness of the coating layer and an enhancement of the corrosion resistance were found. Open circuit potential (OCP) of different galvanized layers in different corrosive media viz. 5% NaCl and 0.5 M H2SO4 solutions at 25 ± 1 °C was measured as a function of time. A nobler OCP was exhibited for samples treated with ZnO and Ni than sample of pure Zn; this indicates a dissolution process followed by passivation due to the surface oxide formation. The high negative OCP can be attributed to the better alloying reaction between Zn and Fe and to the sacrificial nature of the top pure zinc layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号