首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the relationship between the treatment duration of atmospheric pressure plasma jet (APPJ) and the penetration depth of the surface modification into textile structures, a four-layer stack of polyester woven fabrics was exposed to helium/oxygen APPJ for different treatment durations. The water-absorption time for the top and the bottom sides of each fabric layer was reduced from 200 s to almost 0 s. The capillary flow height for all fabric layers in the stack increased linearly with the treatment duration but the rate of increasing reduced linearly with the fabric layer number. A model for the capillary flow height as a function of treatment duration and the layer number was established based on the experimental data and the maximum penetration depth of the APPJ was predicted for the polyester fabric. The improved wettability of the fabrics was attributed to the enhanced surface roughness due to plasma etching and the surface chemical composition change due to plasma-induced chemical reaction as detected by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. The surface roughness and the surface chemical composition change diminished as the fabric layer number increased.  相似文献   

2.
Single-phase Ba(Mg1/3Ta2/3)O3 thin films were prepared by radiofrequency plasma beam assisted pulsed laser deposition (RF-PLD) starting from a bulk ceramic target synthesized by solid state reaction. Atomic force microscopy, X-ray diffraction and spectroscopic ellipsometry were used for morphological, structural and optical characterization of the BMT thin films. The X-ray diffraction spectra show that the films exhibit a polycrystalline cubic structure. From spectroscopic ellipsometry analysis, the refractive index varies with the thin films deposition parameters. By using the transmission spectra and assuming a direct band to band transition a band gap value of ≈4.72 eV has been obtained.  相似文献   

3.
As-deposited antimony sulfide thin films prepared by chemical bath deposition were treated with nitrogen AC plasma and thermal annealing in nitrogen atmosphere. The as-deposited, plasma treated, and thermally annealed antimony sulfide thin films have been characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV-vis spectroscopy, and electrical measurements. The results have shown that post-deposition treatments modify the crystalline structure, the morphology, and the optoelectronic properties of Sb2S3 thin films. X-ray diffraction studies showed that the crystallinity of the films was improved in both cases. Atomic force microscopy studies showed that the change in the film morphology depends on the post-deposition treatment used. Optical emission spectroscopy (OES) analysis revealed the plasma etching on the surface of the film, this fact was corroborated by the energy dispersive X-ray spectroscopy analysis. The optical band gap of the films (Eg) decreased after post-deposition treatments (from 2.36 to 1.75 eV) due to the improvement in the grain sizes. The electrical resistivity of the Sb2S3 thin films decreased from 108 to 106 Ω-cm after plasma treatments.  相似文献   

4.
Polycrystalline powders of the layered MnPS3 compound have been intercalated with K+ ions by ion-exchange to yield the K2xMn1 − xPS3 intercalate. X-ray photoelectron spectroscopy has been applied to learn about the electronic structure of this compound. In particular, we have studied the XPS spectra of the Mn 2p and 3p, P and S 2p, K 2p and 3p core levels and of the valence band region. The binding energies for various core levels of the elements present in this compound and their observed chemical shifts are analyzed. The data give evidence for the lack of non-equivalent atoms of K, Mn, P and S. Shake-up satellites are present at the Mn 2p and 3p core levels. The occurrence of such lines allows us to hypothesize that K2xMn1 − xPS3 is a large-gap insulating Mn compound. Confirmation that only an ion transfer accompanies the intercalation process is given from both the strong observed similarity with the corresponding XPS spectra in MnPS3 and the observed binding energy positions of the K 2p and 3p levels. As regards the valence band XPS spectrum, the observed analogies with the corresponding XPS spectra of the pure compound and of other K compounds have allowed us to single out two regions and their probable contributors.  相似文献   

5.
In this study, we investigated the surface properties of diamond-like carbon (DLC) films for biomedical applications through plasma etching treatment using oxygen (O2) and hydrogen (H2) gas. The synthesis and post-plasma etching treatment of DLC films were carried out by 13.56 MHz RF plasma enhanced chemical vapor deposition (PECVD) system. In order to characterize the surface of DLC films, they were etched to a thickness of approximately 100 nm and were compared with an as-deposited DLC film. We obtained the optimum condition through power variation, at which the etching rate by H2 and O2 was 30 and 80 nm/min, respectively. The structural and chemical properties of these thin films after the plasma etching treatment were evaluated by Raman and Fourier transform infrared (FT-IR) spectroscopy. In the case of as-deposited and H2 plasma etching-treated DLC film, the contact angle was 86.4° and 83.7°, respectively, whereas it was reduced to 35.5° in the etching-treated DLC film in O2 plasma. The surface roughness of plasma etching-treated DLC with H2 or O2 was maintained smooth at 0.1 nm. These results indicated that the surface of the etching-treated DLC film in O2 plasma was hydrophilic as well as smooth.  相似文献   

6.
In enhanced glow discharge plasma immersion ion implantation (EGD-PIII) that involves a small pointed anode and large area tabular cathode, the high negative substrate bias not only acts as the plasma producer but also supplies the implantation voltage. Consequently, an electric field is created to focus the electrons and the electron focusing field in turn enhances the glow discharge process. In this work, the discharge characteristics of EGD-PIII are investigated experimentally. The discharge initiation and extinction characteristics during pulsed biasing are discussed. The duration of the post pulse-off plasma is explained from the viewpoint of particle motion and experimentally verified by employing an auxiliary disk. Our experiments show that a dual-pulse method may be utilized to determine the remnant plasma.  相似文献   

7.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit.  相似文献   

8.
Barrier dielectric is an important part of atmospheric pressure dielectric barrier discharge (AP-DBD), which partly affects discharge characteristics. Conversely, discharge plasma also has influence on dielectric surface properties. To investigate this influence, some experiments were carried out on a home-built AP-DBD system with glass plate as barrier dielectric. Surface wettability was evaluated by water contact angles on a drop shape analysis system. The morphologies and chemical compositions of the glass sample surfaces were observed by field-emission scanning electron microscope (FESEM) and energy dispersive X-ray spectroscopy (EDS) attached to FESEM. The results show that water contact angles decrease as discharge energy increases, micro-discharge etching zones are formed into glass surface and different from the control glass in surface micro-structure and chemical compositions.  相似文献   

9.
Yttrium oxide thin films are deposited by microwave electron cyclotron resonance (ECR) plasma assisted metal organic chemical vapour deposition process using an indegeneously developed Y(thd)3 {(2,2,6,6-tetramethyl-3,5-heptanedionate)yttrium} precursor. Depositions were carried out at two different argon gas flow rates keeping precursor and oxygen gas flow rate constant. The deposited coatings are characterized by X-ray photoelectron spectroscopy (XPS), glancing angle X-ray diffraction (GIXRD) and infrared spectroscopy. Optical properties of the films are studied by spectroscopic ellipsometry. Hardness and elastic modulus of the films are measured by load depth sensing nanoindentation technique. Stability of the film and its adhesion with the substrate is inferred from the nanoscratch test.It is shown here that, the change in the argon gas flow rates changes the ionization of the gas in the microwave ECR plasma and imposes a drastic change in the characteristics like composition, structure as well as mechanical properties of the deposited film.  相似文献   

10.
Polyamide 6 (PA 6) films are treated with helium(He)/CF4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.  相似文献   

11.
To mimic the unique hierarchical structures of natural bone tissue, a novel hydroxyapatite (HA) composite coming from cormcob was synthesized by biomimetic method. Corncob, a natural porous material, was modified by phosphorylation with NaOH-H3PO4 methods. Subsequently, the phosphorylated samples were immersed in saturated Ca(OH)2 solution to be pre-calcified for 4 days, and then in a simulated body fluid (SBF) to be mineralized for 21 days. The results showed that bone-like apatite crystals formed both on the surface and inside the pores of the phosphorylated corncob. The apatite-corncob composite characterized with a hierarchical structure, and it is expected to be useful as a natural porous bioactive bone-repairing material.  相似文献   

12.
We demonstrate a semiconducting material, TiO2−δ, with magnetism up to 880 K, without the introduction of magnetic ions. The magnetism in these films stems from the controlled introduction of anion defects from both the film–substrate interface as well as processing under a deficient oxygen atmosphere. First-principle band structure calculations indicate that the exchange between Ti cations mediated by an oxygen anion is positive, i.e., ferromagnetic, whereas the exchange between cations via a vacancy is negative, i.e., ferrimagnetic. It is likely that both the mechanisms are active in this system. This represents a new and promising approach in the search for room-temperature magnetic semiconductors.  相似文献   

13.
The photoluminescent (PL) emission and excitation behaviour of green-emitting CaAl2S4:Eu2+ powder phosphor is reported in detail. CaAl2S4:Eu2+ emission provides good CIE colour coordinates (x=0.141; y=0.721) for the green component in display applications. Powder with a dopant concentration of 8.5 mol% shows the highest luminescence efficiency. Temperature dependence of the radiative properties, such as luminescence intensity and decay time, was investigated. In particular, the Stokes shift, the mean phonon energy, the redshift, the energy of the f→d and d→f transition and the crystal field splitting of the CaAl2S4:Eu2+ emission were determined. The thermal quenching of the emission was examined.  相似文献   

14.
Modified substrates with nanometer scale smooth surface were obtained via coating a layer of CaO-Al2O3-SiO2 (CaAlSi) high temperature glaze with proper additives on the rough-95% Al2O3 ceramics substrates. (Ba0.6Sr0.4)TiO3 (BST) thin films were deposited on modified Al2O3 substrates by radio-frequency magnetron sputtering. The microstructure, dielectric, and insulating properties of BST thin films grown on glazed-Al2O3 substrates were investigated by X-ray diffraction (XRD), atomic force microscope (AFM), and dielectric properties measurement. These results showed that microstructure and dielectric properties of BST thin films grown on glazed-Al2O3 substrates were almost consistent with that of BST thin films grown on LaAlO3 (1 0 0) single-crystal substrates. Thus, the expensive single-crystal substrates may be substituted by extremely cheap glazed-Al2O3 substrates.  相似文献   

15.
Superparamagnetic γ-Fe2O3 nanocrystallites have been prepared by γ-irradiating ferrocene in the presence of isopropyl alcohol to get Fe nanoparticles in nitrogen atmosphere and at room temperature, followed by oxidization in air to obtain γ-Fe2O3. The final black powder was characterized with X-ray powder diffraction (XRD), transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). From XRD pattern and XPS spectrum, we can confirm to get γ-Fe2O3. The particle size is several nanometers as shown in TEM image. Magnetic hysteresis loop measurements exhibited that the γ-Fe2O3 nanoparticles display superparamagnetism. However, a trace black powder was obtained in kerosene oil using the same method. A possible formation mechanism of the γ-Fe2O3 nanoparticles was suggested.  相似文献   

16.
The optical absorption edge of brookite TiO2 was measured at room temperature, using natural crystals. The measurements extend up to 3.54 eV in photon energy and 2000 cm−1 in absorption coefficient. The observed absorption edge is broad and extends throughout the visible, quite different from the steep edges of rutile and anatase. No evidence of a direct gap is seen in the range measured. The spectral dependence of the absorption strongly suggests that the brookite form of TiO2 is an indirect-gap semiconductor with a bandgap of about 1.9 eV.  相似文献   

17.
The domain structures in (001) surface of Pb(Mg1/3Nb2/3)O3-40% PbTiO3 single crystals were investigated by piezoresponse force microscopy. Both micron-sized fingerprint 180° and parallel 90° domains were observed in the sample. Different sets of favourable {110} oriented domain patterns were found to meet, intersect or grow through each other. In addition, the piezoelectricity decreases sharply at the domain walls in 180° structures, but does not in the 90° domain structures.  相似文献   

18.
The phonon spectra of metallic disilicides VSi2, NbSi2, and TaSi2 have been studied in detail by inelastic neutron scattering at 300 K and specific heat measurements between 10 K and 250 K. The specific heat calculated from the generalised phonon density of states extracted from neutron measurements is in good agreement with the measured lattice contribution to the specific heat. The properties of the phonon spectra are discussed in relation with other data reported for these isostructural and isoelectronic disilicides.  相似文献   

19.
We report on study of morphology, optical contrast and transport characteristics of La0.7Ba0.3MnO3 (LBMO) manganite thin films bilayered with SnO2 on Si (0 0 1) substrate, synthesized using pulsed laser deposition system. X-ray diffraction study reveals that both LBMO and SnO2 show polycrystalline growth over the substrate. Atomic force microscopy shows interesting pyramidal structures of LBMO of size ∼2 μm × 1 μm × 0.1 μm. On the other hand, SnO2 grows in the form of close packed cylindrical clusters of ∼200 nm radius. Near-field optical microscopy (NSOM) study using 532 nm laser reveal that optical NSOM output intensity in LBMO is four times less than SnO2 signal. Transport characterizations show that this bilayer configuration exhibit non-linear current-voltage characteristics from 300 upto 50 K. The nature becomes linear below this temperature. The results project the system as a promising candidate in non-conventional device category in the area of spintronics.  相似文献   

20.
Laser surface alloying of low carbon steel electroplated with thin (10 μm) Ni using an 850 W CW CO2 laser is reported for the first time. Fe-Ni binary alloys of different concentrations are formed by varying laser traverse speed from 0.5 to 5 m/min. The phase transformation from α to α + γ is discussed as a function of Ni contents. Development of microstructure in the modified zone is analysed in terms of solidification rate and Ni concentration. A three-fold increase in the microhardness of the binary alloy is observed. Formation of homogenous, adherent and crack free surface alloys is reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号