首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Surface Science》1987,29(3):341-360
Chemisorption of H2 and O2 and resulting changes in electrical conductance of a typical gas sensing material, PtPd/TiO2, and thin Pt films on glass are studied and compared. The activation energy of conduction increases as Pt film thickness decreases. Chemisorption of H2 on thin Pt films causes an increase in conductance and activation energy of conduction. O2 chemisorption results in a decrease in conductance and increase in activation energy of conduction. Alteration in the number of charge carriers and reduction in charge carrier mobility are the mechanisms proposed for the observed changes. Compared to thin Pt films, relatively large changes in electrical conductance are observed upon chemisorption of gases on TiO2 supported PtPd. The role of the oxide substrate in the observed chemical interaction and electronic response is discussed. The electronic changes upon adsorption/desorption of gases are reversible for thin Pt films but only partially reversible for TiO2 supported PtPd.  相似文献   

2.
The lowest-energy structures of binary (PtPd)n, (PtNi)m, (PtNi3)s, and (Pt3Ni)s nanoclusters, with n=2–28, m=2–20, and s=4–6, modeled by the many-body Gupta potential, were obtained by using a genetic-symbiotic algorithm. These structures were further relaxed within the density functional theory framework in order to obtain the most stable structures for each composition. Segregation is confirmed in all the (PtPd)n clusters, where the Pt atoms occupy the cluster core and the Pd atoms are situated on the cluster surface. In contrast, for the (PtNi)m nanoalloys, the Ni atoms are mainly found in the cluster core and the Pt atoms are segregated to the cluster surface. Likewise, for the (PtNi3)s nanoalloys, Ni atoms mainly compose the cluster core but there is no clear segregation of the Pt atoms to the surface. Furthermore, for the (Pt3Ni)s bimetallic clusters the Pt atoms concentrate in the cluster core and the Ni atoms are segregated to the surface. On the other hand, it has been experimentally found that the Pt0.75Ni0.25 supported nanoparticles present a higher catalytic activity for the selective oxidation of CO in the presence of hydrogen than the Pt0.5Ni0.5 and Pt0.25Ni0.75 nanoparticles. In order to understand this tendency in the catalytic activity, we also performed density functional calculations of the molecular CO adsorption on bimetallic Pt-Ni nanoclusters with the mentioned compositions.  相似文献   

3.
A sample of Au–Pd bimetallic nanoparticles supported on γ-Fe2O3 was synthesized in a sonochemically one-pot process. The structural analyses of the synthesized sample were performed by the techniques of X-ray Absorption Fine Structure (XAFS), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and UV–vis spectrometry. Results indicated that the synthesized sample formed a core-shell structure in which a gold core was surrounded by a thin palladium shell. The reaction rate constant for the hydrogenation of cyclohexene of the present sample showed higher value than that of Pd nanoparticles supported on γ-Fe2O3 and core-shell structured Au–Pd nanoparticles supported on SiO2. The present sample is a promising catalyst material which has a high catalytic activity.  相似文献   

4.
Mössbauer spectroscopy at 78 K was used to study the interaction between tetra-n-butyl-tin and the surfaces of silica or silica supported rhodium. At room temperature, the tetra-n-butyl-tin was physically adsorbed on the surfaces. After reaction under hydrogen at 373 K, the formation of grafted organometallic fragments on the Rh surface was confirmed whereas with pure silica, ≡SiO-Sn(n-C4H9)3 moieties were observed. After treatment at 523 K, the rhodium grafted organometallic species was completely decomposed and there was formation of a defined bimetallic RhSn compound.  相似文献   

5.
Effect of composition on the dispersion of AuxCu1-x bimetallic nanoparticles into nylon 11 matrix has been investigated. TEM, EDX, and XPS depth profiling were used for characterizing the changes in the composition of the bimetallic particles and in the depth distribution of the particles in the nylon 11 layer caused by heat treatment in N2 atmosphere. The island-like bimetallic particles were found to be formed on the nylon 11 surface before heat treatment. The results of XPS depth profiling revealed that, by the heat treatment, the AuxCu1-x bimetallic particles with x? 0.55 were not dispersed into the nylon 11 layer while those with x≥ 0.70 were homogeneously dispersed in the films, indicating the existence of critical composition for penetration of the bimetallic particles. By comparing the composition and structure of the bimetallic particles, the cause of these finding is discussed in terms of surface free energy of the particles. Received 29 November 2000  相似文献   

6.
To study the pure catalytic activity of metallic nanoparticles, the formation of methane on gasborne Ni nanoparticles, so called aerosol catalysis experiments, were performed. Beside effects typical for the methanation such as poisoning of the particle surface at temperatures above 385°C, the maximum of the catalytic activity was observed for Ni particles of about 14 nm, i.e. in a size range, which is quite uncommon for typical nanoeffects of metallic particles. To clarify, which catalytic phenomena are related to the aerosol state, the same reaction was performed on supported Ni nanoparticles, which were also generated and conditioned in the gas phase and deposited on a SiO2 surface by thermophoresis. For these supported particles, the same reaction conditions were established as before for the gasborne Ni nanoparticles. However, differences in the mass transport characteristics of educt and product molecules to the particles were encountered and led to lower overall reaction rates. While qualitatively poisoning kinetics and activation energies agreed for both cases, significant differences were observed for the size dependence of the catalytic activity and for the sintering kinetics. The observed shift of the optimum size for the methanation from 14 nm (aerosol) to 25 nm (on support) can be explained by different adsorption enthalpies of the educt gases on aerosol and supported Ni nanoparticles, respectively.  相似文献   

7.
Flame synthesis of WO3 and WOx (2.9 < x < 3) nanoparticles is carried out by adding a dilute concentration of WF6 as precursor in a low-pressure H2/O2/Ar premixed flame reactor. The reactor is equipped with molecular-beam sampling and particle mass spectroscopy (PMS) to determine particle composition and sizes as a function of height above burner. Varying the H2/O2 ratio allowed us to tune the stoichiometry of the product. With a H2/O2 ratio of 0.67 white colored stoichiometric WO3 is formed, whereas the H2/O2 ratio >0.8 yields blue colored non-stoichiometric WOx (2.9 < x < 3) nanoparticles. The size of nanoparticles can be controlled by varying the residence time in the high-temperature zone of the reactor as observed by molecular-beam sampling with subsequent analysis using PMS. Transmission electron microscopy (TEM) images of as-synthesized nanoparticles show that particles are non-agglomerated and have an almost spherical morphology. The X-ray diffraction (XRD) pattern of the as-synthesized material indicates that the powders exhibit poor crystallinity, however, subsequent thermal annealing of the sample in air changes its structure from amorphous to crystalline phase. It is observed that particles with sub-stoichiometric composition (WOx) show higher conductivity compared to the stoichiometric WO3 sample.  相似文献   

8.
X-ray photoemission spectroscopy (XPS) has been used to study the surface reaction of Zn3P2 single crystals.The spectra of crystals exposed to H2, O2, CO2, O2+H2O or CO2+H2O during a four week period were compared to the spectra of as-grown or in UHV scraped samples. For samples contaminated with the wet gases O2+H2O and CO2+H2O additional phosphorus core levels together with a shift of the zinc core levels were observed. For crystals exposed to atmosphere during several months no phosphorus could be detected on the gasgrown surface, whereas the stochiometry of Zn3P2 was maintained within the bulk. Crystals with scraped surfaces showed no moisture sensitivity. No surface contamination was also detected for Zn3P2 crystals deposited with up to 1000 L H2O or exposed to atmosphere during 30 min.  相似文献   

9.
Ag nanoparticles on SiO2/Si surfaces synthesized using the Tollen's reagent and a subsequent acid-etching were characterized using X-ray photoelectron spectroscopy (XPS). Combining the reduction of the Tollen's reagent and the chemical etching, one can create naked Ag nanoparticles with various sizes in the size range below ∼10 nanometers (nm). The reduced particle size by the chemical etching was identified using positive core level shifts with increasing etching time. Ag nanoparticles smaller than ∼3 nm undergo a reversible oxidation and reduction cycle by reacting with H2O2/H2O and a subsequent heating under vacuum to 150 °C, which was not found for the bulk counterparts and larger particles, demonstrating unique chemical properties of nanoparticles compared to the bulk counterparts.  相似文献   

10.
Using a chemically induced transition method in FeCl2 solution, γ-Fe2O3 based magnetic nanoparticles, in which γ-Fe2O3 crystallites were coated with FeCl3?6H2O, were prepared. During the synthesis of the γ-Fe2O3 nanoparticles Cu(I) modification of the particles was attempted. According to the results from both magnetization measurements and structural characterization, it was judged that a magnetic silent “dead layer”, which can be attributed to spin disorder in the surface of the γ-Fe2O3 crystallites due to breaking of the crystal symmetry, existed in the unmodified particles. For the Cu(I)-modified sample, the CuCl thin layer on the γ-Fe2O3 crystallites incurred the crystal symmetry to reduce the spin disorder, which “awakened” the “dead layer” on the surface of the γ-Fe2O3 crystallites, enhancing the apparent magnetization of the Cu(I)-modified nanoparticles. It was determined that the surface spin disorder of the magnetic crystallite could be related to the coating layer on the crystallite, and can be modified by altering the coating layer to enhance the effective magnetization of the magnetic nanoparticles.  相似文献   

11.
The chemisorption of H2, O2, CO, CO2, NO, C2H4, C2H2 and C has been studied on the clean Rh(111) and (100) surfaces. LEED, AES and thermal desorption were used to determine the surface structures, disordering and desorption temperatures, displacement and decomposition characteristics for each species. All of the molecules studied readily chemisorbed on both surfaces. A large variety of ordered structures was observed, especially on the (111) surface. The disordering temperatures of most ordered surface structures on the (111) surface were below 100°C. It was necessary to adsorb the gases at 25° C or below in order to obtain well-ordered surface structures. Chemisorbed oxygen was readily removed from the surface by H2 or CO gas at crystal temperatures above 50°C. CO2 appears to dissociate to CO upon adsorption on both rhodium surfaces as indicated by the identical ordering and desorption characteristics of these two molecules. C2H4 and C2H2 also had very similar ordering and desorption characteristics and it is likely that the adsorbed species formed by both molecules is the same. Decomposition of ethylene produced a sequence of ordered carbon surface structures on the (111) face as a result of a bulk-surface carbon equilibrium. The chemisorption properties of rhodium appear to be generally similar to those of iridium, nickel and palladium.  相似文献   

12.
A simple method for synthesizing the BixPdy bimetallic particles is described. The structure, composition distribution and size of synthesized BixPdy bimetallic particles were characterized using a number of analytical techniques. The Bi:Pd atomic ratio (x:y) of the nanoparticles was determined to be approximately 1:3 (Bi24Pd76), 1:1 (Bi54Pd46) and 3:1 (Bi74Pd26). The (111) diffraction peaks within the X-ray diffraction patterns of the bimetallic nanoparticles shifted from 39.9° to 38.5° as the Bi content increased from 0% to 75%. The d-spacings calculated from the 2θ data of (111) planes were 2.33, 2.34, 2.32 and 2.26 nm for nanoparticles with a Bi:Pd atomic ratio of 3:1, 1:1, 1:3 and 0:1 respectively. The crystalline properties of the surface of the BixPdy bimetallic nanoparticles were observed in high-resolution transmission electron microscopy analysis. The d-spacings between the adjacent lattice planes were measured on the surface of BixPdy bimetallic nanoparticles by averaging 10 lattice fringes distance. A regular face-centered cubic lattice was observed throughout the prepared BixPdy bimetallic nanoparticles. The lattice d-spacing of the Bi3Pd1, Bi1Pd1 and Bi1Pd3, bimetallic nanoparticles was approximately 2.34, 2.33 and 2.32 Å, respectively, which can be indexed to the (111) planes. These measurements correspond to the values calculated using the Bragg equation (d = /2sinθ). The catalytic activity of BixPdy bimetallic nanoparticles was determined for the nitro compound reduction and Suzuki-Miyaura coupling reactions under green conditions (in an aqueous solution). Bi1Pd3 nanoparticles were shown to provide the best catalytic performance during both reactions, resulting in a yield of 98% in both cases.  相似文献   

13.
A series of PdxNi100−x nanoparticles were prepared by the co-precipitation method and analyzed using a temperature-programmed surface reaction (TPSR) of their methanation reactions. ESCA measurement suggested that the as-prepared Pd-Ni alloys had Pd-core/Ni-shell structure. Surface Pd segregation occurred during H2 reduction and resulted in a surface composition close to the nominal value. The TPSR experiments were performed by pre-adsorption of CO with H2 to form methane. The peak temperature of methanation increased as Pd content increased, indicating that a methanation reaction is favored on Ni and Ni-rich alloy nanoparticles. For physical mixtures of Pd and Ni nanoparticles, methanation behaviors is similar to those of alloy nanoparticles; but the methanation temperatures of physical mixtures are always higher than those of alloy nanoparticles. This may be due to the formation of a Pd-enriched alloy surface layer during reduction in H2 at 400 °C, or because the CO molecules adsorbed on the Pd sites spill over onto the Ni sites for methanation. Using TPSR technique and measuring methanation temperature, the top-most surface of such bimetallic nanoparticles can be probed.  相似文献   

14.
PtNi/C electrocatalysts were synthesised by borohydride method on functionalised carbon support. Energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy and both cyclic and linear voltammetry were employed to characterise the composition, crystalline structure, morphology and catalytic properties of the PtNi/C electrocatalysts. Different Ni proportions in the PtNi/C electrocatalysts were evaluated in the cathode or anode in a H2/air proton exchange membrane fuel cells (PEMFC) by polarisation curves. PtNi particles uniformly dispersed with different proportions of metals obtained. The increase of Ni proportion in the electrocatalyst led to materials with higher mass activity values toward the oxygen reduction reaction and a greater electrochemical-active surface area. PtNi/C electrocatalysts in the cathode presented higher mass activity values at high potential in the PEMFC. The best PEMFC performance was obtained with PtNi 13 at.% Ni (cathode) and Pt/C (anode) relative to the Pt/C (cathode and anode) with identical Pt loadings. PtNi/C electrocatalysts in PEMFC may be used as an alternative to Pt/C electrocatalyst.  相似文献   

15.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

16.
Ultraviolet photoemission spectroscopy with hv < 12 eV has been used to study O2, CO, and H2 adsorption on the cleaved GaAs(110) face. It was found that O2 exposures above 105 L(1LM = 10?6 Torr sec) were required to produce changes in the energy distribution curves. At O2 exposures of 106 L on p-type and 108 L on n-type an oxide peak is observed in the EDC's located 4 eV below the valence band maximum. On p-type GaAs, O2 exposures cause the Fermi level at the surface to move up to a point 0.5 eV above the valence band maximum, while on n-type GaAs O2 exposures do not remove the Fermi level pinning caused by empty surface states on the clean GaAs. CO was found to stick to GaAs, but to desorb over a period of hours, and not to change the surface Fermi level position. H2 did not affect the EDC's, but atomic H lowered the electron affinity and raised the surface position of the Fermi level on p-type GaAs. A correlation is found in which gases which stick to the GaAs cause an upward movement of the Fermi level at the surface on p-type GaAs, while gases which stick only temporarily do not change the surface position of the Fermi level.  相似文献   

17.
The gas-phase hydrogenolysis of methylcyclopentane (MCP) was investigated over the bimetallic Ir-Au/γ-Al2O3 catalysts. The bimetallic systems containing the atomic Au/Ir ratios in the range of 0.125-8 and a fixed total metal content of 8 wt.%, were prepared by the sequential impregnation (SI) and co-impregnation (CI) methods. The corresponding monometallic Ir/γ-Al2O3 and Au/γ-Al2O3 catalysts were also prepared. The materials were characterized by ICP, XRD, N2 adsorption, TEM, and H2 chemisorption. Highly dispersed Ir nanoparticles were obtained in all cases, while the size of Au nanoparticles increased (up to 50 nm) upon the increasing Au content in the catalyst. The monometallic gold catalyst did not adsorb H2. The incorporation of Au increased the amount of irreversible adsorbed H2 in the Ir-Au/γ-Al2O3 catalysts with respect to the monometallic ones. The products obtained in the MCP hydrogenolysis were 2-methylpentane (2-MP), 3-methylpentane (3-MP) and n-hexane (n-H). The initial rate (molecules of MCP reacted s−1 gIr−1) increased with the Au content. The deactivation was lower for bimetallic catalysts, particularly for the CI ones. The addition of Au played a significant effect on chemisorption and catalytic properties of Ir.  相似文献   

18.
In order for the development of cleaning technology of extreme ultra violet lithography photomask, the behavior of Ru surfaces after treatment with ozonated deionized water (DIO3) solution was studied using Ru and ruthenium oxide particles and 2 nm-thick Ru capping layers. No significant changes in crystalline structures or chemical states of the Ru surfaces, nor any similarities with the structures or states of ruthenium oxide, were observed after DIO3 treatment. Oxidation of ruthenium to form RuO2 or RuO3 was not observed. Adsorption of H2O molecules on the Ru layer increased the surface roughness, but the desorption of H2O molecules recovered it. Local chemisorption of H2O molecules on the Ru surface may be the reason why rougher Ru surfaces were observed after DIO3 cleaning.  相似文献   

19.
《Surface science》1989,219(3):L601-L606
In situ and real-time optical absorption measurements of supported copper particles (4–10 nm) at wavelengths of 300 to 800 nm are carried out under H2, CO, and O2 respectively as ambient gases in the temperature range of 300 to 673 K. We observe a reversible change in the optical spectra caused by oxidation of copper and reduction of copper oxide. The data strongly indicate that the oxidation of small copper particles is composed of a fast process of Cu to CuOx (x ≈ 0.67) and a slow process of CuOx (x≈ 0.67) to CuO.  相似文献   

20.
This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ~9.5 nm virtually monodispersed nickel ferrite (NiFe2O4) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe2O4 particles at nano scale for the first time. It is found that each NiFe2O4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe2O4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe2O4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe2O4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号