首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Liling Yan  Ke Wang  Lin Ye 《Surface science》2007,601(5):1394-1402
Polystyrene (PS) colloidal crystal films with well-ordered arrays of PS spheres treated with argon plasma and coated with fluoroalkylsilane (FAS) were characterized by means of spectroscopy ellipsometry, X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (ToF-SIMS). The XPS analysis indicated that the FAS film on the plasma treated PS surface was a monolayer with an orderly packed CF3 group pointing outwards from the surface. The chemical composition of the PS surface changed immediately after a very short period of argon plasma treatment, while the subsequent coating of FAS on the plasma treated PS surface further modified the surface chemistry. The untreated PS surface exhibited poor interaction with FAS molecules. XPS and ToF-SIMS analyses showed the plasma treatment involved the oxidation of PS surface, where oxygen functional groups -O and O were generated, promoting FAS deposition on the plasma treated surface with strong secondary ion fragments originating from the FAS. The overall results indicated that plasma treatment was beneficial to the deposition of the FAS monolayer.  相似文献   

2.
In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe3O4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe3O4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-CO) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe3O4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe3O4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe3O4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe3O4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe3O4 hybrids was discussed.  相似文献   

3.
Multi-walled carbon nanotubes were exposed either to nitric acid or to an oxygen plasma to synthesize oxygen-containing functional groups which were characterized by high-resolution X-ray photoelectron spectroscopy (XPS). The C 1s spectra revealed that the treatment with nitric acid mainly resulted in the formation of carboxylic (COOR) and phenolic (COR) groups, whereas the plasma treatment led to a higher amount of carbonyl (CO) groups. Furthermore, the nitric acid treatment yielded a 60% higher surface oxygen concentration compared to the plasma treatment, and created a minor amount of nitrogen-containing functional groups. Thus, the nitric acid treatment was found to be more effective in creating acidic functional groups. The presence and the thermal stability of these groups was also investigated by temperature-programmed desorption (TPD). The release of carbon dioxide was detected at about 350 and 450 °C, indicating the decomposition of COOR groups. The CO groups were more stable decomposing even above 600 °C. In addition, ammonia was adsorbed as probe molecule followed by TPD to derive the amount and the acidity of the carboxylic and phenolic groups.  相似文献   

4.
Surface chemistry of atmospheric plasma modified polycarbonate substrates   总被引:1,自引:0,他引:1  
Surface of polycarbonate substrates were activated by atmospheric plasma torch using different gas pressure, distance from the substrates, velocity of the torch and number of treatments. The modifications were analyzed by contact angle measurements, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Plasma treatment caused the surface characteristics to become more hydrophilic as measured by the water contact angle, which decreased from 88° to 18°. The decrease in contact angle was mainly due to oxidation of the surface groups, leading to formation of polar groups with hydrophilic property. XPS results showed an increase in the intensity of -(C-O)- groups and also introduction of new functional groups i.e. -(O-CO)- after the treatment process. AFM topographic images demonstrated an increase in the rms roughness of the surface from 2.0 nm to 4.0 nm caused by the treatment. Increase in rms roughness of the surface caused relevant decrease in transmission up to ∼2-5%.  相似文献   

5.
The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O2-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of CO and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O2-plasma treatment, a water contact angle reduction from >90° (no water penetration into the untreated PE powder) down to 65° was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.  相似文献   

6.
The imidazole derivatives functionalized single‐walled carbon nanotubes (SWNTs) were synthesized by a diazonium‐based reaction. We have designed and synthesized two imidazole derivatives to modify SWNTs. The resulting products were characterized by Fourier transform infrared (FT‐IR) spectroscopy, Raman spectroscopy, ultraviolet visible (UV/Vis) spectroscopy, thermo gravimetric analysis (TGA), energy dispersive X‐ray spectroscopy (EDX), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Electrochemical measurements via a cyclic voltammetry method revealed that the weak intramolecular electronic interactions presented between the attached imidazole derivatives groups and the nanotubes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Surface products of oil-impregnated insulation paper during the damage process caused by partial discharge (PD), as well as gas within the cavity, were studied. An optical microscope and a scanning electron microscope (SEM) were used to investigate surface morphology, while an infrared spectroscopy (IR) and an X-ray photoelectron spectroscopy (XPS) were used to study surface products and their components. The volume variation in cavity gas was also analyzed. Furthermore, gas constituents and their relevant contents were studied using a gas chromatography-mass spectrometer (GC-MS). The study results reveal the following: during the PD damage process, the total gas volume and the content of electronegative gasses alternately decline and increase, while discharge types alternate between pulse type and pseudo-glow type (or glow type); “surface droplets” and “crystalline solids” appear on the insulation surface one after another; surface droplets mainly consist of (CO)-group-containing compounds, whereas crystalline solids are mainly carboxylic acids, with carboxyl groups also found in cellulose chains; and the discharge type related to the oxidization of decomposition products is the main factor that determines the state (liquid or solid) of the surface products.  相似文献   

8.
A simple, inexpensive and environmental chemical treatment process, i.e., treating porous poly(tetrafluoroethylene) (PTFE) films by a mixture of potassium permanganate solution and nitric acid, was proposed to improve the hydrophilicity of PTFE. To evaluate the effectiveness of this strong oxidation treatment, contact angle measurement was performed. The effects of treatment time and temperature on the contact angle of PTFE were studied as well. The results showed that the chemical modification decreased contact angle of as-received PTFE film from 133 ± 3° to 30 ± 4° treated at 100 °C for 3 h, effectively converting the hydrophobic PTFE to a hydrophilic PTFE matrix. The changes in chemical structure, surface compositions and crystal structure of PTFE were examined by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), environmental scanning electron microscopy (ESEM), X-ray diffraction (XRD), respectively. It was found that the F/C atomic ratio decreased from untreated 1.65-0.10 treated by the mixture at 100 °C for 3 h. Hydrophilic groups such as carbonyl (CO) and hydroxyl (OH) were introduced on the surface of PTFE after treatment. Furthermore, hydrophilic compounds K0.27MnO2·0.54H2O was absorbed on the surface of porous PTFE film. Both the introduction of hydrophilic groups and absorption of hydrophilic compounds contribute to the significantly decreased contact angle of PTFE.  相似文献   

9.
Oxygen and water plasma immersion ion implantation (PIII) was used to modify poly vinyl chloride (PVC) to enhance oxygen-containing surface functional groups for more effective grafting. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Our experimental results show that both oxygen and water PIII can greatly improve the O to C ratios on the surface. The optimal plasma processing conditions differ for the two treatments. The hydrophilicity and surface energy of the plasma-implanted PVC are also improved significantly. Our results indicate that O2 and H2O PIII increase both the polar and dispersion interactions and consequently the surface energy. It can be explained by the large amount of oxygen introduced to the surface and that many CC bonds are transformed into more polar oxygen containing functional groups.  相似文献   

10.
The surface of cyclo-olefin polymer (COP) was treated with vacuum ultraviolet (VUV) light at 172 nm wavelength to improve the wettability and adhesion properties. Through VUV treatment in air, the terminal groups of the COP surface were oxidized into oxygen functional groups, containing CO, CO, and COO components, making the COP surface hydrophilic. The extent of oxygenation was evaluated by XPS and FTIR-ATR spectra, and it was shown that the surface properties, hydrophilicity, and functionalization were dependent on both VUV irradiation distance and irradiation time, which have an effect on the concentration of oxygen functional groups. VUV-light treatment with a short irradiation distance was more effective in introducing oxygen functional groups.  相似文献   

11.
In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. OCO) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.  相似文献   

12.
《Surface science》1991,247(1):L209-L214
The adsorption of ammonia on thin films of iron with and without potassium has been investigated with near-edge X-ray absorption fine-structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS). The NEXAFS results suggest that for low coverages of chemisorbed ammonia on iron there is a dilation of the NH bond length with respect to solid ammonia. At higher ammonia coverages there is less perturbation of NH3, as inferred from NEXAFS and XPS experiments, suggesting that the adsorption energy of the ammonia is a strong function of surface coverage. The coadsorption of potassium metal is found to prevent the ammonia NH bond dilation observed over clean iron.  相似文献   

13.
We report on the novel ternary hybrid materials consisting of semiconductor (TiO2), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO2-POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF3SO3 precursor and a NaBH4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the CO groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.  相似文献   

14.
In this study the weathering behavior of southern yellow pine (SYP) wood samples pretreated in different solutions has been examined using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and various types of physical characterization regarding material loss and discoloration. The treatment solutions include water as a control, a commercially available water repellent (WR) wood treating additive and polyethylene glycol (PEG) products including PEG PLUS™, PEG 8000 solutions and Compound 20M in varying concentrations. All contained the wood preservative chromated copper arsenate (CCA). One sample was treated with a CCA solution only. The treatments were carried out at 20 °C and 150 psig for 1/2 h after exposure to vacuum (28 mmHg) for 15 min. Simulated weathering was achieved in an Atlas 65-W Weather-Ometer for 2000 h with both light and dark periods and rain. The temperature ranged from 23 °C during the dark cycle to 35 °C during the light cycle. With weathering the XPS O/C ratios increase due to oxidation of the surface. Exposure to UV light results in bond breakage and reaction with oxygen in the presence of air to form organic functional groups such as , , CO and/or O-C-O. These oxidized products can protect the underlying wood from deterioration if they are insoluble in water and remain on the surface as a protective coating. If soluble, rain washes the compounds away and assists in the degradation. Correlated changes are observed in the XPS O/C ratios, the high-resolution XPS C 1s spectra, the SEM micrographs and physical measurements including thickness alteration, weight loss, and discoloration by yellowing or whitening of the weathered wood. The PEG treatments are effective in protecting wood with the 2% PEG PLUS treatment providing the best weathering behavior similar to that of the CCA treatment. The WR and water treatments yield the poorest weathering properties.  相似文献   

15.
Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr2O3/H2SO4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that CO bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 °C for 25 min and at 70-80 °C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.  相似文献   

16.
Self-assembled monolayer (SAM) techniques were used to adsorb 4-aminothiophenol (4-ATP) on platinum electrodes in order to obtain an amino-terminated SAM as the base for the chemical attachment of single-wall carbon nanotubes (SWCNTs). A physico-chemical, morphological and electrochemical characterizations of SWCNTs attached onto the modified Pt electrodes was done by using reflection-absorption infrared spectroscopy (RAIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and cyclic voltammetry (CV) techniques. The SWNTs/4-ATP/Pt surface had regions of small, medium, and large thickness of carbon nanotubes with heights of 100-200 nm, 700 nm to 1.5 μm, and 1.0-3.0 μm, respectively. Cyclic voltammetries (CVs) in sulfuric acid demonstrated that attachment of SWNTs on 4-ATP/Pt is markedly stable, even after 30 potential cycles. CV in ruthenium hexamine was similar to bare Pt electrodes, suggesting that SWNTs assembly is similar to a closely packed microelectrode array.  相似文献   

17.
The electronic structure and chemical properties of catalysts prepared by the electroless deposition (ED) of Ag onto Pt/SiO2 were studied using a combination of X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. XPS studies revealed a negative shift (up to −0.75 eV) in the Ag 3d binding energy (BE) relative to bulk Ag. Both the magnitude and direction of the shift are consistent with DFT calculations of model Ag/Pt(1 1 1) surfaces. DFT calculations have also been employed to study the adsorption of two probe molecules, carbon monoxide and 1-epoxy-3-butene (EpB), on the model surfaces. Combined with previously published reports, the results presented here suggest that (1) the AgPt/SiO2 catalysts that are most active for hydrogenation of the EpB olefin function consist of an adlayer of Ag on Pt rather than a surface or bulk alloy and that (2) the higher activity and selectivity of ED-prepared Ag-Pt/SiO2 catalysts for CC hydrogenation of EpB to 1-epoxybutane are consistent with computed electronic (ligand) and bifunctional effects.  相似文献   

18.
Maryam Ebrahimi 《Surface science》2009,603(9):1203-5808
Competition between the CC functional group with the OH group in allyl alcohol and with the CO group in allyl aldehyde in the adsorption and thermal chemistry on Si(1 0 0)2×1 has been studied by X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD), as well as density-functional theory (DFT) calculations. The similarities found in the C 1s and O 1s spectra for both molecules indicate that the O-H dissociation product for allyl alcohol and [2 + 2] CO cycloaddition product for allyl aldehyde are preferred over the corresponding [2 + 2] CC cycloaddition products. Temperature-dependent XPS and TPD studies further show that thermal evolution of these molecules gives rise to the formation of ethylene, acetylene, and propene on Si(1 0 0)2×1, with additional CO evolution only from allyl alcohol. The formation of these desorption products also supports that the [2 + 2] CC cycloaddition reaction does not occur. In addition, the formation of SiC at 1090 K is observed for both allyl alcohol and allyl aldehyde. We propose plausible surface-mediated reaction pathways for the formation of these thermal evolution products. The present work illustrates the crucial role of the Si(1 0 0)2×1 surface in selective reactions of the Si dimers with the O−H group in allyl alcohol and with the CO group in allyl aldehyde over the CC functional group common to both molecules.  相似文献   

19.
The adsorption of acetonitrile on the Si(0 0 1) surface has been investigated using X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR). XPS and FTIR spectra indicate that adsorbed acetonitrile forms two correlated binding configurations, a CN species with a strong FTIR absorption at 1540 cm−1 and a CCN (ketenimine) species that has a very strong FTIR absorption at 1952 cm−1. The CCN FTIR peak at 1952 cm−1 shows a striking polarization dependence, with the infrared transition dipole almost entirely in the plane of the sample and parallel to the SiSi dimer axis. Our data suggests that the primary CCN structure results from cleavage of two C-H bonds, forming a structure in which the N and terminal C atom are both linked to the surface. Temperature-dependent experiments help to elucidate the complicated reaction mechanism for acetonitrile adsorbing onto the Si(0 0 1) surface. Dosing at higher temperature increases the amount of CCN relative to CN species while heating leads to direct transformation of the CN to the CCN species. Our results indicate that previous studies, which considered only products formed by cleavage of a single C-H bond, have misidentified the primary ketenimine product. A reinterpretation of the earlier results, combined with data presented here, sheds new light onto the products and mechanism of interaction of acetonitrile with Si(0 0 1).  相似文献   

20.
A novel approach to surface modification of polystyrene (PS) polymer with atomic oxygen radical anions-dissolved solution (named as O water) has been investigated. The O water, generated by bubbling of the O (atomic oxygen radical anion) flux into the deionized water, was characterized by UV-absorption spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. The O water treatments caused an obvious increase of the surface hydrophilicity, surface energy, surface roughness and also caused an alteration of the surface chemical composition for PS surfaces, which were indicated by the variety of contact angle and material characterization by atomic force microscope (AFM) imaging, field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and attenuated total-reflection Fourier transform infrared (ATR-FTIR) measurements. Particularly, it was found that some hydrophilic groups such as hydroxyl (OH) and carbonyl (CO) groups were introduced onto the polystyrene surfaces via the O water treatment, leading to the increases of surface hydrophilicity and surface energy. The active oxygen species would react with the aromatic ring molecules on the PS surfaces and decompose the aromatic compounds to produce hydrophilic hydroxyl and carbonyl compounds. In addition, the O water is also considered as a “clean solution” without adding any toxic chemicals and it is easy to be handled at room temperature. Present method may suit to the surface modification of polymers and other heat-sensitive materials potentially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号