首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study pairs of identical coupled chaotic oscillators. In particular, we have used Roessler (in the funnel and no funnel regimes), Lorenz, and four-dimensional chaotic Lotka-Volterra models. In all four of these cases, a pair of identical oscillators is asymmetrically coupled. The main result of the numerical simulations is that in all cases, specific values of coupling strength and asymmetry exist that render the two oscillators periodic and synchronized. The values of the coupling strength for which this phenomenon occurs is well below the previously known value for complete synchronization. We have found that this behavior exists for all the chaotic oscillators that we have used in the analysis. We postulate that this behavior is presumably generic to all chaotic oscillators. In order to complete the study, we have tested the robustness of this phenomenon of chaos suppression versus the addition of some Gaussian noise. We found that chaos suppression is robust for the addition of finite noise level. Finally, we propose some extension to this research.  相似文献   

2.
Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism’s fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.  相似文献   

3.
The electrical behavior of anisotropic BSCCO single crystals is modeled by mutually coupled long Josephson junctions. We show that although the fluxons in the different layers do not a priori prefer the in-phase motion desired for many potential applications it is possible to induce such behavior by coupling the system to a high-Q resonator with a resonance frequency corresponding to fluxon in-phase motion. The resulting model is a set of coupled non-linear partial differential equations. By direct numerical simulations we have demonstrated that the qualitative behavior of the combined stacked long Josephson junctions and cavity system can be understood on the basis of the general concepts of nonlinear oscillators interacting with a resonator. For some region of the parameter space it is possible to reach the desired synchronous state, making the system potentially suitable for applications. We also look at the different dynamical states defined by different fluxon dynamical states in combination with different cavity properties.  相似文献   

4.
Arnold tongue structures generated due to the mutual entrainment of two periodic oscillators are studied experimentally and numerically. This mutual entrainment is provoked due to the mutual (bidirectional) coupling between the two oscillators. In experiments, this bidirectional coupling is achieved by immersing a pair of anodes (oscillators) in a common electrolytic solution. A voltage mismatch between these anodes renders the time period of the uncoupled oscillators non-identical. Moreover, the coupling strength between the two oscillators is uniquely determined by the Euclidean distance separating them. Systematically varying the distance between these two anodes as a function of their voltage mismatch, phase locked domains were located. Subsequently, Arnold tongue structures were constructed in the experiments. Numerical simulations, using a model for electrochemical corrosion, corroborate our experimental findings.  相似文献   

5.
We investigate chaotic phase synchronization (CPS) in three-coupled chaotic oscillator systems. According to the coupling strength and mismatches in the frequencies of these oscillators, we can observe complete CPS where all three oscillators exhibit CPS, and partial CPS where only two oscillators exhibit CPS. When the coupling strength is weakened, we observe a phenomenon that complete CPS among the three oscillators is suddenly disrupted without going through partial CPS. In this case oscillators exhibit quasi-CPS where two oscillators appear to exhibit CPS transiently, and the combination of the two oscillators changes with time. We call this phenomenon CPS switching D. It is revealed that phase fluctuation plays an important role in CPS switching D. It is also shown that the amplitude with a specific structure strengthens the degree of CPS switching. In the present paper, we characterize this CPS switching and discuss its mechanism.  相似文献   

6.
王立明  吴峰 《物理学报》2013,62(21):210504-210504
研究了耦合分数阶振子的同步、反同步和振幅死亡等问题. 基于P-R振子在特定参数下的双稳态特性, 利用最大条件Lyapunov指数、最大Lyapunov指数和分岔图等数值方法分析发现, 通过选取初始条件和耦合强度, 可以控制耦合振子呈现混沌同步、混沌反同步、全部振幅死亡同步、全部振幅死亡反同步和部 分振幅死亡等丰富的动力学现象. 基于蒙特卡罗方法的原理, 在初始条件相空间中随机选取耦合振子的初始位置, 计算不同耦合强度下耦合振子的全部振幅死亡态、部分振幅死亡态和非振幅死亡态的比例, 从统计学角度表征了耦合分数阶双稳态振子的动力学特征. 几种有代表性的双稳态振子的吸引域进一步证明了统计方法的计算结果. 关键词: 振幅死亡 吸引域 双稳态  相似文献   

7.
Z.-H. Liu  P.M. Hui 《Physica A》2007,383(2):714-724
We propose and study the collective behavior of a model of networked signaling objects that incorporates several ingredients of real-life systems. These ingredients include spatial inhomogeneity with grouping of signaling objects, signal attenuation with distance, and delayed and impulsive coupling between non-identical signaling objects. Depending on the coupling strength and/or time-delay effect, the model exhibits completely, partially, and locally collective signaling behavior. In particular, a correlated signaling (CS) behavior is observed in which there exist time durations when nearly a constant fraction of oscillators in the system are in the signaling state. These time durations are much longer than the duration of a spike when a single oscillator signals, and they are separated by regular intervals in which nearly all oscillators are silent. Such CS behavior is similar to that observed in biological systems such as fireflies, cicadas, crickets, and frogs. The robustness of the CS behavior against noise is also studied. It is found that properly adjusting the coupling strength and noise level could enhance the correlated behavior.  相似文献   

8.
We investigate a multi-agent system with a behavior akin to the cluster formation in systems of coupled oscillators. The saturating attractive interactions between an infinite number of non-identical agents, characterized by a multimodal distribution of their natural velocities, lead to the emergence of clusters. We derive expressions that characterize the clusters, and calculate the asymptotic velocities of the agents and the critical value for the coupling strength under which no clustering can occur. The results are supported by mathematical analysis.For the particular case of a symmetric and unimodal distribution of the natural velocities, the relationship with the Kuramoto model of coupled oscillators is highlighted. While in the generic case the emergence of a cluster corresponds to a second-order phase transition, for a specific choice of the natural velocity distribution a first-order phase transition may occur, a phenomenon recently observed in the Kuramoto model. We also present an example for which the clustering behavior is quantitatively described in terms of the coupling strength.As an illustration of the potential of the model, we discuss how it applies to the dynamic process of opinion formation.  相似文献   

9.
The entrainment transition of coupled random frequency oscillators is revisited. The Kuramoto model (global coupling) is shown to exhibit unusual sample-dependent finite-size effects leading to a correlation size exponent nu=5/2. Simulations of locally coupled oscillators in d dimensions reveal two types of frequency entrainment: mean-field behavior at d>4 and aggregation of compact synchronized domains in three and four dimensions. In the latter case, scaling arguments yield a correlation length exponent nu=2/(d-2), in good agreement with numerical results.  相似文献   

10.
We consider an extension of Kuramoto’s model of coupled phase oscillators where oscillator pairs interact with different strengths. When the coupling coefficient of each pair can be separated into two different factors, each one associated to an oscillator, Kuramoto’s theory for the transition to synchronization can be explicitly generalized, and the effects of coupling heterogeneity on synchronized states can be analytically studied. The two factors are respectively interpreted as the weight of the contribution of each oscillator to the mean field, and the coupling of each oscillator to that field. We explicitly analyze the effects of correlations between those weights and couplings, and show that synchronization can be completely inhibited when they are strongly anti-correlated. Numerical results validate the theory, but suggest that finite-size effect are relevant to the collective dynamics close to the synchronization transition, where oscillators become entrained in synchronized frequency clusters.  相似文献   

11.
We study phase-locking in a network of coupled nonlinear oscillators with local interactions and random intrinsic frequencies. The oscillators are located at the vertices of a graph and interact along the edges. They are coupled by sinusoidal functions of the phase differences across the edges, and their intrinsic frequencies are independent and identically distributed with finite mean and variance.We derive an exact expression for the probability of phase-locking in a linear chain of such oscillators and prove that this probability tends to zero as the number of oscillators grows without bound. However, if the coupling strength increases as the square root of the number of oscillators, the probability of phase-locking tends to a limiting distribution, the Kolmogorov-Smirnov distribution. This latter result is obtained by showing that the phase-locking problem is equivalent to a discretization of pinned Brownian motion.The results on chains of oscillators are extended to more general graphs. In particular, for a hypercubic lattice of any dimension, the probability of phase-locking tends to zero exponentially fast as the number of oscillators grows without bound. We also consider a less stringent type of synchronization, characterized by large clusters of oscillators mutually entrained at the same average frequency. It is shown that if such clusters exist, they necessarily have a sponge-like geometry.  相似文献   

12.
We analyze the phenomenon of frequency clustering in a system of coupled phase oscillators. The oscillators, which in the absence of coupling have uniformly distributed natural frequencies, are coupled through a small-world network, built according to the Watts-Strogatz model. We study the time evolution and determine variations in the transient times depending on the disorder of the network and on the coupling strength. We investigate the effects of fluctuations in the average frequencies, and discuss the definition of the threshold for synchronization. We characterize the structure of clusters and the distribution of cluster sizes in the synchronization transition, and define suitable order parameters to describe the aggregation of the oscillators as the network disorder and the coupling strength change. The non-monotonic behavior observed in some order parameters is related to fluctuations in the mean frequencies.  相似文献   

13.
We experimentally investigate the formation of clusters in a population of globally coupled photochemical oscillators. The system consists of catalytic micro-particles in Belousov-Zhabotinsky solution and the coupling exploits the excitatory properties of light; an increase in the light intensity leads to excitation (“firing") of an oscillator. As the coupling strength is increased, a transition occurs from incoherence to clustering, whereby the oscillators split into synchronised groups, to complete synchronisation. Multistability is observed between a one-phase cluster (fully synchronised group) and two-phase clusters (two groups with the same frequency but different phases). The results are reproduced in simulations and we demonstrate that the heterogeneity of the population as well as the relaxational nature of the oscillators is important in the observation of clusters. We also examine the exploitation of the phase model for the prediction of clusters in experiments.  相似文献   

14.
The suprachiasmatic nucleus (SCN), an endogenous clock in the brain of the mammals, regulates the physiological and behavioral activities according to the natural 24 h light-darkness cycle. Animals can also entrain themselves to non 24 h light-darkness cycles. The range of the periods which the animal can entrain to is called entrainment range. Previous studies have found that the entrainment range depends on the coupling strength and the sensitive strength to the light for the SCN neurons. However, the effect of the interplay between these two strengths on the entrainment range has not been examined. In the present study, we examine the effect of the ratio of the sensitive strength to the coupling strength on the entrainment range. We find that there is a parabolic-like relationship between the entrainment range and the ratio, and the largest entrainment range is obtained with a suitable ratio. Interestingly, the value of this suitable ratio is related to the comparison in the intrinsic amplitudes between the light information sensitive neurons and the light information insensitive neurons. Our finding will shed light on the interplay between the sensitive strength to the light information and the coupling strength, and the understanding for the diversity of the entrainment range among various species.  相似文献   

15.
The economic and financial systems consist of many nonlinear factors that make them behave as the complex systems. Recently many chaotic finance systems have been proposed to study the complex dynamics of finance as a noticeable problem in economics. In fact, the intricate structure between financial institutions can be obtained by using a network of financial systems. Therefore, in this paper, we consider a ring network of coupled symmetric chaotic finance systems, and investigate its behavior by varying the coupling parameters. The results show that the coupling strength and range have significant effects on the behavior of the coupled systems, and various patterns such as the chimera and multi-chimera states are observed. Furthermore, changing the parameters' values, remarkably influences on the oscillators attractors. When several synchronous clusters are formed, the attractors of the synchronized oscillators are symmetric, but different from the single oscillator attractor.  相似文献   

16.
17.
黄霞  徐灿  孙玉庭  高健  郑志刚 《物理学报》2015,64(17):170504-170504
本文讨论了一维闭合环上Kuramoto相振子在非对称耦合作用下同步区域出现的多定态现象. 研究发现在振子数N≤3情形下系统不会出现多态现象, 而N≥4多振子系统则呈现规律的多同步定态. 我们进一步对耦合振子系统中出现的多定态规律及定态稳定性进行了理论分析, 得到了定态渐近稳定解. 数值模拟多体系统发现同步区特征和理论描述相一致. 研究结果显示在绝热条件下随着耦合强度的减小, 系统从不同分支的同步态出发最终会回到同一非同步态. 这说明, 耦合振子系统在非同步区由于运动的遍历性而只具有单一的非同步态, 在发生同步时由于遍历性破缺会产生多个同步定态的共存现象.  相似文献   

18.
We investigate the synchronous dynamics of Kuramoto oscillators and van der Pol oscillators on Watts-Strogatz type small-world networks. The order parameters to characterize macroscopic synchronization are calculated by numerical integration. We focus on the difference between frequency synchronization and phase synchronization. In both oscillator systems, the critical coupling strength of the phase order is larger than that of the frequency order for the small-world networks. The critical coupling strength for the phase and frequency synchronization diverges as the network structure approaches the regular one. For the Kuramoto oscillators, the behavior can be described by a power-law function and the exponents are obtained for the two synchronizations. The separation of the critical point between the phase and frequency synchronizations is found only for small-world networks in the theoretical models studied.  相似文献   

19.
The amplitude death phenomenon has been experimentally observed with a pair of thermo-optical oscillators linearly coupled by heat transfer. A parametric analysis has been done and compared with numerical simulations of a time delayed model. The role of the coupling strength is also discussed from experimental and numerical results.  相似文献   

20.
We investigate a system of coupled phase oscillators with nearest neighbors coupling in a chain with fixed ends. We find that the system synchronizes to a common value of the time-averaged frequency, which depends on the initial phases of the oscillators at the ends of the chain. This time-averaged frequency decays as the coupling strength increases. Near the transition to the frozen state, the time-averaged frequency has a power law behavior as a function of the coupling strength, with synchronized time-averaged frequency equal to zero. Associated with this power law, there is an increase in phases of each oscillator with 2pi jumps with a scaling law of the elapsed time between jumps. During the interval between the full frequency synchronization and the transition to the frozen state, the maximum Lyapunov exponent indicates quasiperiodicity. Time series analysis of the oscillators frequency shows this quasiperiodicity, as the coupling strength increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号