首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetone butanol ethanol was produced in a continuous immobilized cell (biofilm) plug-flow reactor inoculated with Clostridium beijerinckii BA101. To achieve high reactor productivity, C. beijerinckii BA101 cells were immobilized by adsorption onto clay brick. The continuous plug-flow reactor offers high productivities owing to reduced butanol inhibition and increased cell concentration. Although high productivity was achieved, it was at the expense of low sugar utilization (30.3%). To increase sugar utilization, the reactor effluent was recycled. However, this approach is complicated by butanol toxicity. The effluent was recycled after removal of butanol by pervaporation to reduce butanol toxicity in the reactor. Recycling of butanolfree effluent resulted in a sugar utilization of 100.7% in addition to high productivity of 10.2g/(L·h) at a dilution rate of 1.5 h−1. A dilution rate of 2.0h−1 resulted in a reactor productivity of 16.2g/(L·h) and sugar utilization of 101.4%. It is anticipated that this reactor-recovery system would be economical for butanol production when using C. beijerinckii BA101.  相似文献   

2.
Acetone, butanol, ethanol (ABE, or solvents) were produced from starch-based packing peanuts in batch and continuous reactors. In a batch reactor, 18.9 g/L of total ABE was produced from 80 g/L packing peanuts in 110 h of fermentation. The initial and final starch concentrations were 69.6 and 11.1 g/L, respectively. In this fermentation, ABE yield and productivity of 0.32 and 0.17 g/(L·h) were obtained, respectively. Compared to the batch fermentation, continuous fermentation of 40 g/L of starch-based packing peanuts in P2 medium resulted in a maximum solvent production of 8.4 g/L at a dilution rate of 0.033 h−1. This resulted in a productivity of 0.27 g/(L·h). However, the reactor was not stable and fermentation deteriorated with time. Continuous fermentation of 35 g/L of starch solution resulted in a similar performance. These studies were performed in a vertical column reactor using Clostridium beijerinckii BA101 and P2 medium. It is anticipated that prolonged exposure of culture to acrylamide, which is formed during boiling/autoclaving of starch, affects the fermentation negatively.  相似文献   

3.
In this article we report on acetone butanol ethanol (ABE) fermentation characteristics of degermed corn when using Clostridium beijerinckii BA101. Recent economic studies suggested that recovery of germ from corn and hence corn oil would help to make the ABE fermentation process more economical. C. beijerinckii BA101 ferments corn mash efficiently to produce ABE under appropriate nutritional and environmental conditions. Corn mash contains germ/corn oil that is, possibly, ancillary to the production of butanol during the ABE fermentation process. Since the presence of corn oil is not a critical factor in solvent fermentation, it can be removed and this will allow for byproduct credit. Batch fermentation of degermed corn resulted in 8.93 g/L of total ABE production as compared with 24.80 g/L of total ABE when supplemented with P2 medium nutrients. During the course of the germ separation process, corn steeping is required prior to grinding and removing the germ. It is likely that some nutrients from the corn are leached out during the steeping process. This may reduce the rate of fermentation and impact the final concentration of butanol/ABE that can be achieved. Fermentation of degermed corn with corn steep liquor resulted in the production of 19.28 g/L of ABE.  相似文献   

4.
Corn steep liquor (CSL), a byproduct of the corn wet-milling process, was used in an immobilized cell continuous biofilm reactor to replace the expensive P2 medium ingredients. The use of CSL resulted in the production of 6.29 g/L of total acetone-butanol-ethanol (ABE) as compared with 6.86 g/L in a control experiment. These studies were performed at a dilution rate of 0.32 h−1. The productivities in the control and CSL experiment were 2.19 and 2.01 g/(L·h), respectively. Although the use of CSL resulted in a 10% decrease in productivity, it is viewed that its application would be economical compared to P2 medium. Hence, CSL may be used to replace the P2 medium. It was also demonstrated that inclusion of butyrate into the feed was beneficial to the butanol fermentation. A control experiment produced 4.77 g/L of total ABE, and the experiment with supplemented sodium butyrate produced 5.70 g/L of total ABE. The butanol concentration increased from 3.14 to 4.04 g/L. Inclusion of acetate in the feed medium of the immobilized cell biofilm reactor was not found to be beneficial for the ABE fermentation, as reported for the batch ABE fermentation. Names are necessary to report factually on available data. However, the USDA neither guarantees nor warrants the standard of the product, and the use of the names by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
Several Clostridium spp. were incubated in a nitrogen-free medium (non-growth medium) containing only butyric acid as a sole precursor for performing butanol production by non-growing cells. Non-growing cells of Clostridium spp., especially Clostridium beijerinckii TISTR 1461, could convert butyric acid to butanol via their sole solventogenic activity. This activity was further enhanced in the presence of glucose as a co-substrate. In addition to glucose, other monosaccharides (i.e., galactose and xylose) and disaccharides (i.e., maltose, sucrose, and lactose) could also be used as a co-substrate with butyric acid. Among the organic acids tested (i.e., formic, acetic, propionic, and butyric acids), only butyric and acetic acids were converted to butanol. This study has shown that it is possible to use the non-growing cells of Clostridium spp. for direct conversion of sugars and organic acids to biobutanol. With this strategy, C. beijerinckii TISTR 1461 produced 12 g/L butanol from 15 g/L glucose and 10 g/L butyric acid with a high butanol yield of 0.68 C-mol/C-mol and a high butanol ratio of 88 %.  相似文献   

6.
The endoglucanase I (EGI) from fungus Trichoderma reesei was cloned, expressed, and secreted from Yarrowia lipolytica using the XPR2 promoter. The signal sequence of EGI transferred from T. reesei was efficiently processed in the Y. lipolytica secretory pathway and directed the secretion of active EGI into the culture medium. However, the recombinant EGI produced from YLCSIn strain was hyperglycosylated and significantly larger than the native enzyme produced by the parent strain. The expression of EGI using XPR2 preproregion has caused secretion of modified proteins that still retained cellulase activity. This resulted from imprecise processing of the N-terminus of recombinant protein. While the batch culture produced 5 mg EGI/L from YLCSIn strain, the EGI yield was increased approx 20-fold when the fed-batch fermentation process strategy in combination with the high-cell density cultivation technique was employed. These results showed that the Y. lipolytica is a useful host organism for production of a large amount of large size heterologous proteins, especially when used in combination with high-cell density and fed-batch culture techniques.  相似文献   

7.
For optimum fermentation, fermenting xylose into acetic acid by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. Exposed to a mixture of glucose and xylose, it preferentially consumesxylose over glucose. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5g/L of yeast extract as the nitrogen source results in a maximum acetate concentration of 15.2 g/L and yield of 0.76 g of acid/g of xylose. Corn steep liquor (CLS) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose, and glucose from a mixture of sugars in batch fermentation. Arabinose, mannose, and galactose are consumed only slightly. This organism loses viability on fed-batch operation, even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, d-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.  相似文献   

8.
In this work, acetone–butanol–ethanol (ABE) fermentation characteristics of cassava starch and cassava chips when using Clostridium saccharoperbutylacetonicum N1-4 was presented. The obtained results in batch mode using a 1-L fermenter showed that C. saccharoperbutylacetonicum N1-4 was a hyperamylolytic strain and capable of producing solvents efficiently from cassava starch and cassava chips, which was comparable to when glucose was used. Batch fermentation of cassava starch and cassava chips resulted in 21.0 and 19.4 g/L of total solvent as compared with 24.2 g/L of total solvent when using glucose. Solvent productivity in fermentation of cassava starch was from 42% to 63% higher than that obtained in fermentation using corn and sago starches in the same condition. In fermentation of cassava starch and cassava chips, maximum butanol concentration was 16.9 and 15.5 g/L, respectively. Solvent yield and butanol yield (based on potential glucose) was 0.33 and 0.41, respectively, for fermentation of cassava starch and 0.30 and 0.38, respectively for fermentation using cassava chips.  相似文献   

9.
We studied high-density cultures of Pseudomonas putida IPT 046 for the production of medium-chain-length polyhydroxyalkanoates (PHAMCL) using an equimolar mixture of glucose and fructose as carbon sources. Kinetics studies of P. putida growth resulted in a maximum specific growth rate of 0.65h−1. Limitation and inhibition owing to NH4 + ions were observed, respectively, at 400 and 3500 mg of NH4 +/L. The minimum concentration of dissolved oxygen in the broth must be 15% of saturation. Fed-batch strategies for high-cell-density cultivation were proposed. Pulse feed followed by constant feed produced a cell concentration of 32 g/L in 18 h of fermentation and low PHAMCL content. Constant feed produced a cell concentration of 35 g/L, obtained in 27 h of fermentation, with up to 15% PHAMCL. Exponential feed produced a cell concentration of 30 g/L in 20 h of fermentation and low PHAMCL content. Using the last strategy, 21% PHAMCL was produced during a period of 34 h of fed-batch operation, with a final cell concentration of 40 g/L and NH4 + limitation. Using phosphate limitation, 50 g/L cell concentration, 63% PHAMCL and a productivity of 0.8 g/(L·h) were obtained in 42 h of fed-batch operation. The PHAMCL yield factors from consumed carbohydrate for N-limited and P-limited experiments were, respectively, 0.15 and 0.19 g/g.  相似文献   

10.
In pH-controlled batch fermentations with pure sugar synthetic hardwood hemicellulose (1% [w/v] glucose and 4% xylose) and corn stover hydrolysate (8% glucose and 3.5% xylose) lacking acetic acid, the xyloseutilizing, tetracycline (Tc)-sensitive, genomically integrated variant of Zymomonas mobilis ATCC 39676 (designated strain C25) exhibited growth and fermentation performance that was inferior to National Renewable Energy Laboratory's first-generation, Tc-resistant, plasmid-bearing Zymomonas recombinants. With C25, xylose fermentation following glucose exhaustion wasmarkellyslower, and the ethanol yield (based on sugars consumed) was lower, owing primarily to an increase in lactic acid formation. There was an apparent increased sensitivity to acetic acid inhibition with C25 compared with recombinants 39676:pZB4L, CP4:pZB5, and ZM4:pZB5. However, strain C25 performed well in continous ferm entation with nutrient-rich synthetic corn stover medium over the dilution range 0.03–0.06/h, with a maximum provess ethanol yield at D=0.03/h of 0.46 g/g and a maximum ethanol productivity of 3 g/(L·h). With 0.35% (w/v) acetic acid in the medium, the process yield at D=0.04/h dropped to 0.32 g/g, and the maximum productivity decreased by 50% to 1.5 g/(L·h). Under the same operating conditions, rec Zm Zm 4:pZB5 performed better; however, the medium contained 20 mg/L of Tc to constantly maintain selective pressure. The absence of any need for antibiotics and antiboitic resistance genes makes the chromosomal integrant C25 more com patible with current regulatory specifications for biocatalysts in large-scale commercial operations.  相似文献   

11.
Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyalkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2 g/L of sodium decanoate, all the recombinant E. coli strains synthesized PHAs consisting of C4, C6, C8, and C10 monomer units. The monomer composition of PHA was dependent on the E. coli strain used. When the fadA mutant E. coli was employed, PHA containing up to 63 mol% of 3-hydroyhexanoate was produced. In fadB and fadAB mutant E. coli strains, 3-hydroxybutyrate (3HB) was efficiently incorporated into PHA up to 86 mol%. Cultivation of recombinant fadA and/or fadB mutant E. coli strains in LB medium containing 10 g/L of sodium gluconate and 2 g/L of sodium decanoate resulted in the production of PHA copolymer containing a very high fraction of 3HB up to 95 mol%. Since the material properties of PHA copolymer consisting of a large fraction of 3HB and a small fraction of medium-chain-length 3HA are similar to those of low-density polyethylene, recombinant E. coli strains constructed in this study should be useful for the production of PHAs suitable for various commercial applications.  相似文献   

12.
Yarrowia lipolytica LgX64.81 is a non-genetically modified mutant that was previously identified as a promising microorganism for extracellular lipase production. In this work, the development of a fed-batch process for the production of this enzyme in this strain was described. A lipolytic activity of 2,145 U/mL was obtained after 32 h of batch culture in a defined medium supplemented with 10 g/L of tryptone, an enhancer of lipase expression. To maximize the volumetric productivity, two different fed-batch strategies had been investigated. In comparison to batch process, the intermittent fed-batch strategy had not improved the volumetric lipase productivity. In contrast, the stepwise feeding strategy combined with uncoupled cell growth and lipase production phases resulted in a 2-fold increase in the volumetric lipase productivity, namely, the lipase activity reached 10,000 U/mL after 80 h of culture. Furthermore, this lipase was purified to homogeneity by anion exchange chromatography on MonoQ resin followed by gel filtration on Sephacryl S-100. This process resulted in an overall yield of 72% and a 3.5-fold increase of the specific lipase activity. The developed process offers a great potential for an economic production of Lip2 at large scale in Y. lipolytica LgX64.81.  相似文献   

13.
The mutant strain designated as ART18, obtained from the wild-type strain Clostridium acetobutylicum PW12 treated by atmospheric and room temperature plasma, showed higher solvent tolerance and butanol production than that of the wild-type strain. The production of butanol was 11.3?±?0.5 g/L, 31 % higher than that of the wild-type strain when it was used for acetone, butanol, and ethanol fermentation in P2 medium. Furthermore, the effects of cassava flour concentration, pH regulators, and vitamins on the ABE production were also investigated. The highest butanol production of 15.8?±?0.8 g/L and butanol yield (0.31 g/g) were achieved after the above factors were optimized. When acetone, butanol, and ethanol fermentation by ART18 was carried out in a 15-L bioreactor, the butanol production, the productivity of butanol, and the total solvent were 16.3?±?0.9, 0.19, and 0.28 g/L/h, respectively. These results indicate that ART18 is a promising industrial producer in ABE fermentation.  相似文献   

14.
Spores ofClostridium acetobutylicum were immobilized in calcium alginate. An active gel preparation was obtained after outgrowth of the spores to vegetative cells within the gel matrix. A 100 mL column containing the immobilized cells was used for continuous production. At steady-state conditions the productivity of butanol was 67 g/L reactor volume/day.  相似文献   

15.
The conversion of glucose and fructose into gluconic acid (GA) and sorbitol (SOR) was conducted in a batch reactor with free (CTAB-treated or not) or immobilized cells of Zymomonas mobilis. High yields (more than 90%) of gluconic acid and sorbitol were attained at initial substrate concentration of 600 g/L (glucose plus fructose at 1:1 ratio), using cells with glucose-fructose-oxidoreductase activity of 75 U/L. The concentration of the products varied hyperbolically with time according to the equations (GA)=t(GA)max/(WGA +t), (SOR)=t (SOR)max/(WSor+t), vGA=[WGA (GA)max]/(WGA+t)2 and VSOR=[WSOR (SOR)max]/(WSOR+t)2. Taking the test carried out with free CTAB-treated cells as an example, the constant parameters were (GA)max= 541 g/L, (SOR)max=552 g/L, WGA=4.8h, WSOR=4.9h, υGA=112.7 g/L· and υSOR=112.7 g/L·.  相似文献   

16.
Panose is a trisaccharide constituted by a maltose molecule bonded to a glucose molecule by an α-1,6-glycosidic bond. This trisaccharide has potential to be used in the food industry as a noncariogenic sweetener, as the oral flora does not ferment it. Panose can also be considered prebiotic for stimulating the growth of benefic microorganisms, such as lactobacillus and bidifidobacteria, and for inhibiting the growth of undesired microorganisms such as E. coli and Samonella. In this paper, the production of panose by enzymatic synthesis in a batch and a fed-batch reactor was optimized using a mathematical model developed to simulate the process. Results show that optimum production is obtained in a fed-batch process with an optimum production of 11.23 g/l h of panose, which is 51.5% higher than production with batch reactor.  相似文献   

17.
Xylose mother liquor (XML) is a by-product of xylose production through acid hydrolysis from corncobs, which can be used potentially for alternative fermentation feedstock. Sixteen Clostridia including 13 wild-type, 1 industrial strain, and 2 genetically engineered strains were screened in XML, among which the industrial strain Clostridium acetobutylicum EA 2018 showed the highest titer of solvents (12.7 g/L) among non-genetic populations, whereas only 40 % of the xylose was consumed. An engineered strain (2018glcG-TBA) obtained by combination of glcG disruption and expression of the d-xylose proton-symporter, d-xylose isomerase, and xylulokinase was able to completely utilize glucose and l-arabinose, and 88 % xylose in XML. The 2018glcG-TBA produced total solvents up to 21 g/L with a 50 % enhancement of total solvent yield (0.33 g/g sugar) compared to that of EA 2018 (0.21 g/g sugar) in XML. This XML-based acetone–butanol–ethanol fermentation using recombinant 2018glcG-TBA was estimated to be economically promising for future production of solvents.  相似文献   

18.
Production of fumaric acid from alkali-pretreated corncob (APC) at high solids loading was investigated using a combination of separated hydrolysis and fermentation (SHF) and fed-batch simultaneous saccharification and fermentation (SSF) by Rhizopus oryzae. Four different fermentation modes were tested to maximize fumaric acid concentration at high solids loading. The highest concentration of 41.32 g/L fumaric acid was obtained from 20 % (w/v) APC at 38 °C in the combined SHF and fed-batch SSF process, compared with 19.13 g/L fumaric acid in batch SSF alone. The results indicated that a combination of SHF and fed-batch SSF significantly improved production of fumaric acid from lignocellulose by R. oryzae than that achieved with batch SSF at high solids loading.  相似文献   

19.
A mutant strain ofPichia stipitis, FPL-061, was obtained by selecting for growth on L-xylose in the presence of respiratory inhibitors. The specific fermentation rate of FPL-061, was higher than that of the parent,Pichia stipitis CBS 6054, because of its lower cell yield and growth rate and higher specific substrate uptake rate. With a mixture of glucose and xylose, the mutant strain FPL-061 produced 29.4 g ethanol/L with a yield of 0.42 g ethanol/g sugar consumed. By comparison, CBS 6054 produced 25.7 g ethanol/L with a yield of 0.35 gJg. The fermentation was most efficient at an aeration rate of 9.2 mmoles O2 L-1 h-1. At high aeration rates (22 mmoles O2 L-1 h-1), the mutant cell yield was less than that of the parent. At low aeration rates, (1.1 to 2.5 O2 L-1 h-1), cell yields were similar, the ethanol formation rates were low, and xylitol accumulation was observed in both the strains. Both strains respired the ethanol once sugar was exhausted. We infer from the results that the mutant, P.stipitis FPL-061, diverts a larger fraction of its metabolic energy from cell growth into ethanol production.  相似文献   

20.
A study was performed regarding the effect of the relation between fill time, volume treated per cycle, and influent concentration at different applied organic loadings on the stability and efficiency of an anaerobic sequencing batch reactor containing immobilized biomass on polyurethane foam with recirculation of the liquid phase (AnSBBR) applied to the treatment of wastewater from a personal care industry. Total cycle length of the reactor was 8 h (480 min). Fill times were 10 min in the batch operation, 4 h in the fed-batch operation, and a 10-min batch followed by a 4-h fed batch in the mixed operation. Settling time was not necessary since the biomass was immobilized and decant time was 10 min. Volume of liquid medium in the reactor was 2.5 L, whereas volume treated per cycle ranged from 0.88 to 2.5 L in accordance with fill time. Influent concentration varied from 300 to 1,425 mg COD/L, resulting in an applied volumetric organic load of 0.9 and 1.5 g COD/L.d. Recirculation flow rate was 20 L/h, and the reactor was maintained at 30 °C. Values of organic matter removal efficiency of filtered effluent samples were below 71% in the batch operations and above 74% in the operations of fed batch followed by batch. Feeding wastewater during part of the operational cycle was beneficial to the system, as it resulted in indirect control over the conversion of substrate into intermediates that would negatively interfere with the biochemical reactions regarding the degradation of organic matter. As a result, the average substrate consumption increased, leading to higher organic removal efficiencies in the fed-batch operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号